• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE MAIN 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • ALLEN e-Store
    • AOSAT
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
NCERT SolutionsCBSE NotesCBSE Exam
Home
Maths
Strategies For Solving Trigonometric Equations

Strategies For Solving Trigonometric Equations

An equation involving one or more trigonometrical ratios of unknown angles is called a trigonometrical equation.

1.0Solutions Of Trigonometric Equations

A value of the unknown angle which satisfies the given equation is called a solution of the trigonometric equation.

(a) Principal solution – The solution of the trigonometric equation lying in the interval [0, 2π).

(b) General solution – Since all the trigonometric functions are many one & periodic, hence there are infinite values of θ for which trigonometric functions have the same value. All such possible values of θ for which the given trigonometric function is satisfied is given by a general formula. Such a general formula is called general solution of trigonometric equation.

(c) Particular solution – The solution of the trigonometric equation lying in the given interval. 

S. No.

Equation

Interval in which principal solution α

General solution

1.

sinθ = k,

(–1 ≤ k ≤ 1)

[−2π​,2π​]

θ = nπ + (–1)n α,

n∈Z

2.

cosθ = k,

(–1 ≤ k ≤ 1)

[0, π]

θ = 2nπ ± α,

n∈Z

3.

tanθ = k,

(k∈R)

(−2π​,2π​)

θ = nπ + α,

n∈Z

4.

cosecθ = k,

k ∈(–∞,–1]∪[1, ∞)

[−2π​,2π​]−{0}

θ = nπ + (–1)n α,

n∈Z

5.

secθ = k,

k ∈(–∞,–1]∪[1, ∞)

[0,π]∖{2π​}

θ = 2nπ ± α,

n∈Z

6.

cotθ = k,

k ∈ R

(0, π)

θ = nπ + α,

n∈Z

General Solutions of Some Trigonometric Equations

(a) If sin θ = 0, then θ = nπ, n ∈ I (set of integers) 

(b) If cos θ = 0, then θ = (2n+1) 2π​ , n ∈ I

(c) If tan θ = 0, then θ = nπ, n ∈ I

(d) If sin θ = sin α, then θ = nπ + (–1)nα ; where α∈[−2π​,2π​] , n ∈ I

(e) If cos θ = cos α, then θ = 2nπ ± α ; where n ∈ I and α ∈ [0,π]

(f) If tan θ = tan α, then θ = nπ + α ; where n ∈ I and α∈[−2π​,2π​]

(g) If sin θ =1, then θ = 2nπ + 2π​ = (4n + 1) 2π​ ; where n ∈ I

(h) If cos θ = 1 then θ = 2nπ ; where n ∈ I

(i) If sin2 θ = sin2 α or cos2 θ = cos2 α or tan2 θ = tan2 α 

then θ = nπ ± α ; where n ∈ I

(j) For n ∈ I, sin nπ = 0 and cos nπ = (–1)n

sin (nπ + θ) = (–1)n sin θ

cos (nπ + θ) = (–1)n cos θ

(k) If n is an odd integer, then sin2nπ​=(−1)2n−1​,cos2nπ​=0, sin(2nπ​+θ)=(−1)2n−1​cosθ, cos(2nπ​+θ)=(−1)2n+1​sinθ

2.0Techniques for Simplifying and Solving Trigonometric Equations

Solving Trigonometric Equations by Factorisation

e.g. (2 sin x – cos x) (1 + cos x) = sin2x

⇒ (2 sin x – cos x) (1 + cos x) – (1 – cos2x) = 0

⇒  (1 + cos x) (2 sin x – cos x – 1 + cos x) = 0

⇒ (1 + cos x) (2 sin x – 1) = 0

⇒ cos x = –1 or sin x = 21​

⇒ cosx = – 1 = cosπ  

⇒ x = 2nπ ± π = (2n ± 1)π, n ∈ I

or sinx = 21​=sin6π​

⇒  x = kπ + (–1)k 6π​ , k ∈ I

Solving Trigonometric Equations by Introducing an Auxiliary Argument

Consider, a sin θ + b cos θ = c .....(i)

∴ a2+b2​a​sinθ+a2+b2​b​cosθ=a2+b2​c​

equation (i) has a solution only if |c| ≤a2+b2​

let a2+b2​a​=cosϕ,a2+b2​b​=sinϕ&ϕ=tan−1ab​ by introducing this auxiliary argument φ, equation (i) reduces to 

sin (θ + φ) = sin(θ+ϕ)=a2+b2​c​ , Now this equation can be solved easily.

Solved Examples

1. Find the general value of x satisfying the equation 3​sinx+cosx=3​

Solution

We have 3​sinx+cosx=3​

Dividing both sides by a2+b2​ i.e. , 4​=2 we get

21​cosx+23​​sinx=23​​

⇒cosxcos3π​+sinxsin3π​=23​​

⇒cos(x−3π​)=cos6π​

⇒x−3π​=2nπ±6π​,n∈I

x−2π​=2nπ+6π​,x−2π​=2nπ−6π​;n∈I

Solving Trigonometric Equation by Reducing it to a Quadratic Equation

e.g. 6 – 10cosx = 3sin2x 

⇒ 6 – 10cosx = 3 – 3cos2x

⇒ 3cos2x – 10cosx + 3 = 0

⇒ 3cosx – 1) (cosx – 3) = 0

⇒ cosx = 31​ or cosx = 3

cosx = 3 is not possible as – 1 ≤ cosx ≤ 1

∴ cosx = 31​ = cos (cos−131​)

⇒ x = 2nπ ± cos–1 (31​),n∈I

Solved Examples

1. Solve sin2θ − cosθ = 41​ for θ and write the values of θ in the interval 0 ≤ θ ≤ 2π.

Solution

The given equation can be written as

1 – cos2θ – cosθ = 41​

⇒ cos2θ + cosθ – 3/4 = 0

⇒ 4cos2θ + 4cosθ – 3 = 0

⇒ (2cosθ – 1)(2cosθ + 3) = 0

⇒ cosθ = 21​,−23​

Since, cosθ = –3/2 is not possible as –1 ≤ cosθ ≤ 1

∴ cosθ=21​

cosθ=cos3π​⟹θ=2nπ±3π​,n∈I

For the given interval, n = 0 and n = 1.

θ=3π​,35π​

2. Find the number of solutions of tanx + secx = 2cosx in [0, 2π].

Solution

Here, tanx + secx = 2cosx

⇒ sinx + 1 = 2 cos2x

⇒ 2sin2x + sinx – 1 = 0

⇒ sinx =21​ , – 1

But sinx = –1 ⇒ x =  23π​ for which tanx + secx = 2 cosx  is not defined.

Thus sinx =21​ ⇒ x = 6π​,65π​

⇒ number of solutions of tanx + secx = 2cos x is 2.

3. Solve the equation 5sin2x – 7sinx cosx + 16cos2 x = 4

Solution

To solve this equation we use the fundamental formula of trigonometric identities,

sin2x + cos2x = 1

writing the equation in the form,

5sin2x – 7sinx . cosx + 16cos2x = 4(sin2x + cos2x)

⇒ sin2x – 7sinx cosx + 12cos2 x = 0

dividing by cos2x on both side we get,

tan2x – 7tanx + 12 = 0

Now it can be factorized as :

(tanx – 3)(tanx – 4) = 0

⇒ tanx = 3, 4 ⇒ x = nπ + tan–1 3

or x = mπ + tan–1 4, m ∈ I.

4. If x ≠ 2nπ​ , n ∈ I and (cosx)sin2x−3sinx+2=1, then find the general solutions of x.

Solution

As  2nπ​ ⇒ cos x ≠ 0, 1, – 1

So, (cosx)sin2x−3sinx+2=1

⇒ sin2x – 3sinx + 2 = 0 ⇒ (sinx – 2) (sinx – 1) = 0

⇒ sinx = 1, 2

where sinx = 2 is not possible and sinx = 1 which is also not possible as x=2nπ​

∴ No solution is possible.

5. Solve the equation sin4x + cos4 27​ sinx.cosx.

Solution

sin4x + cos4x = 27​ sinx.cosx

⇒ (sin2x + cos2x)2 – 2sin2x cos2 27​ sinx.cosx

⇒ 1−21​(sin2x)2=47​(sin2x) ⇒ 2sin22x + 7sin2x – 4 = 0

⇒ (2sin2x –1)(sin2x + 4) = 0

⇒ sin2x = 21​ or sin2x = –4 (which is not possible)

⇒ 2x = nπ + (–1)n 6π​ , n ∈ I  

i.e., x=2nπ​+(−1)n12π​,n∈I

Solving Trigonometric Equations by Introducing an Auxiliary Argument

Consider, a sin θ + b cos θ = c .....(i)

∴ a2+b2​a​sinθ+a2+b2​b​cosθ=a2+b2​c​

equation (i) has a solution only if |c| ≤ a2+b2​

let a2+b2​a​=cosϕ,a2+b2​b​=sinϕandϕ=tan−1ab​ by introducing this auxiliary argument φ, equation (i) reduces to sin (θ + φ) = a2+b2​c​ , Now this equation can be solved easily.

6. Find the number of distinct solutions of secx + tanx = secx+tanx=3​ , where 0 ≤ x ≤ 3π.

Solution

Here, sec x + tanx = 3​

Example for questions Find the number of distinct solutions of secx + tanx  , where 0 ≤ x ≤ 3π.

⇒ 1 + sinx =3​ cosx

or 3​ cosx – sinx = 1

dividing both sides by a2+b2​ i.e.4​=2 , we get 23​​cosx−21​sinx=21​

⇒cos6π​cosx−sin6π​sinx=21​

⇒cos(x+6π​)=21​

As 0 ≤ x ≤ 3π

6π​≤x+6π​≤3π+6π​

x+6π​=3π​,35π​,37π​

x=6π​,23π​,613π​

But at x=23π​ ; tanx and secx is not defined.

∴ Total number of solutions are 2.

7. Find the general value of x satisfying the equation 3​sinx+cosx=3​

Solution

We have 3​sinx+cosx=3​

Dividing both sides by a2+b2​ i.e.4​=2, we get 21​cosx+23​​sinx=23​​.

⇒cosxcos3π​+sinxsin3π​=23​​

⇒cos(x−3π​)=cos6π​

⇒x−3π​=2nπ±6π​,n∈I

⇒x−3π​=2nπ+6π​,+x−3π​=2nπ+6π​n∈Z.

⇒x=2nπ+2π​,x=2nπ+2π​;n∈Z.

3.0Techniques Of Trigonometric Equations Solution

Solving Trigonometric Equations By Transforming Sum Of Trigonometric Functions Into Product

e.g. cos 3x + sin 2x – sin 4x = 0

cos 3x – 2 sin x cos 3x = 0

⇒ (cos3x) (1 – 2sinx) = 0

⇒ cos3x = 0 or sinx = 21​

⇒ cos3x = 0 = cos 2π​ or sinx = 21​ = sin 6π​

⇒ 3x = 2nπ ± 2π​ or x = mπ + (–1)m 6π​

⇒ x = 32nπ​±6π​

or x = mπ + (–1)m 6π​ ; (n, m ∈ I)

Solving trigonometric equations by a change of variable 

(i) Equations of the form P (sin x ± cos x) = 0, P(sin x. cos x) = 0 can be solved by the substitution, cos x ± sin x = t   ⇒  1 ± 2 sin x. cos x = t2.  

(ii) Equations of the form of asinx + bcosx + d = 0, where a, b & d are real numbers can be solved by changing sin x & cos x into their corresponding tangent of half the angle. 

(iii) Many equations can be solved by introducing a new variable.

Solved Examples

1. Solve : cos x + cos 2x + cos 3x = 0.

Solution

cos x + cos 2x + cos 3x = 0

We shall rearrange and use the transformation formula cos 2x + (cos x + cos 3x) = 0

By using the formula, cosA+cosB=2cos(2A+B​)cos(2A−B​)

⇒ cos 2x + 2cos(23x+x​)cos(23x−x​)=0

⇒ cos 2x + 2cos 2x cos x = 0

⇒ cos 2x ( 1 + 2 cos x) = 0

⇒ cos 2x = 0   or 1 + 2cos x = 0

⇒ cos 2x = 0 or cos x = −21​

⇒ cos2x=cos2π​orcosx=cos(π−3π​)

⇒ cos2x=cos2π​orcosx=cos(32π​)

⇒ 2x=(2n+1)2π​orx=2mπ±32π​

⇒ x=(2n+1)4π​orx=2mπ±32π​

∴ the general solution is

x = (2n + 1) 4π​ or 2mπ ± 32π​ , where m, n ϵ I

e.g. sin5x. cos3x = sin6x. cos2x

sin8x + sin2x = sin8x + sin4x

∴ 2sin2x . cos2x – sin2x = 0

⇒ sin2x(2 cos 2x – 1) = 0

sin2x = 0  or 2 cos 2x – 1= 0

sin2x = 0 = sin0

⇒ 2x = nπ + (–1)n × 0, n ∈ I 

⇒ x = 2nπ​ , n ∈ I or 

2 cos 2x – 1= 0

⇒ cos2x = 21​

⇒ cos2x = 21​ = cos 3π​

⇒ 2x = 2mπ ± 3π​ ,  m ∈ I

⇒ x = mπ ± 6π​ , m ∈ I

2. Find the number of solutions in [0,2π​] of the equation cos3x tan5x = sin7x. 

Solution

We have cos3x tan5x = sin7x 

⇒  cos3x(cos5xsin5x​)=sin7x

⇒ 2cos3x sin5x = 2cos 5x sin7x

⇒ sin8x + sin2x = sin12x + sin2x

⇒ sin12x – sin8x = 0

⇒ 2sin2x cos10x = 0

If sin 2x = 0, then x∈[0,2π​]

If cos 10x = 0, then

10x=2π​,23π​

⇒x=20π​,203π​,205π​,207π​,209π​

So, there are 6 possible solutions. 

3. Solve : cosθ + cos3θ + cos5θ + cos7θ = 0

Solution

We have cosθ + cos7θ + cos3θ + cos5θ = 0

⇒ 2cos4θcos3θ + 2cos4θcosθ = 0   

⇒ cos4θ(cos3θ + cosθ) = 0

⇒ cos4θ(2cos2θcosθ) = 0

⇒  cosθ = 0 ⇒   θ = (2n1 + 1) (2π​) ,  n1 ∈ I

or cos2θ = 0  ⇒  θ = (2n2 + 1) (4π​) , n2 ∈ I

or cos4θ = 0 ⇒  θ = (2n3 + 1) (8π​) , n3 ∈ I

Solving trigonometric equations with the use of the boundness of the functions involved

4. Solve : sinx(cos4x​−2sinx)+(1+sin4x​−2cosx)⋅cosx=0.

Solution

sinx(cos4x​−2sinx)+(1+sin4x​−2cosx)⋅cosx=0.

∴ sin x cos 4x​+cosxsin 4x​+cos x=2

∴ sin (45x​)+cosx=2

⇒ sin (45x​)=1 & cos x =1 (as sin θ ≤ 1 & cos θ ≤ 1)

Now consider

cosx = 1

⇒ x = 2π, 4π, 6π, 8π .......

And sin 45x​=1

⇒ x = 52π​,510π​,518π​ ......

Common solution to above APs will be the AP having 

First term = 2π

Common difference = LCM of 2π and 58π​=540π​=8π

∴ General solution will be general term of this AP i.e. 2π + (8π)n, n ∈ I

⇒ x = 2(4n + 1)π, n ∈ I

5. Solve the equation (sinx + cosx)1+sin2x = 2, when 0≤x≤π

Solution

We know, −a2+b2​≤asinθ+bcosθ≤a2+b2​ and –1 ≤ sinθ ≤ 1.

∴ (sinx + cosx) admits the maximum value as 2​ and (1 + sin 2x) admits the maximum value as 2.

Also (2​)2=2

∴ the equation could hold only when, sinx + cosx = 2​ and 1 + sin 2x = 2

Now, sinx + cos x = 2​

⇒  cos(x−4π​)=1

⇒ x = 2nπ + 4π​ , n ∈  I ...... (i)

and  1 + sin 2x = 2

⇒ sin2x = 1 = sin 2π​

⇒ 2x = mπ + (–1)m 2π​ , m ∈ I  

⇒ x=2mπ​+(−1)m4π​ ...... (ii)

The value of x in [0, π] satisfying equations (i) and (ii) is x = 4π​

(when n = 0 & m = 0)     

Note :- sin x + cos x = −2​ and 1 + sin 2x = 2 also satisfies but as x > 0, this solution is not in domain.

6. Find the set of values of x for which 1+tan3x⋅tan2xtan3x−tan2x​=1.

Solution

We have, 1+tan3x⋅tan2xtan3x−tan2x​=1.

⇒ tan (3x – 2x) = 1 

⇒  tan x = 1

⇒ tan x = tan 4π​

⇒ x = nπ +4π​ , n ∈ I {using tanθ = tanα ⇔ θ = nπ + α}

But for this value of x, tan 2x is not defined. Hence the solution set for x is φ.

Table of Contents


  • 1.0Solutions Of Trigonometric Equations
  • 1.1General Solutions of Some Trigonometric Equations
  • 2.0Techniques for Simplifying and Solving Trigonometric Equations
  • 2.1Solving Trigonometric Equations by Factorisation
  • 2.2Solving Trigonometric Equations by Introducing an Auxiliary Argument
  • 2.3Solving Trigonometric Equation by Reducing it to a Quadratic Equation
  • 2.4Solving Trigonometric Equations by Introducing an Auxiliary Argument
  • 3.0Techniques Of Trigonometric Equations Solution

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO