• Classroom Courses
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • AIOT
    • TALLENTEX
    • ASAT (Classroom courses)
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book a demo
NCERT SolutionsCBSE NotesCBSE Exam
Home
Maths
Strategies For Solving Trigonometric Equations

Strategies For Solving Trigonometric Equations

An equation involving one or more trigonometrical ratios of unknown angles is called a trigonometrical equation.

1.0Solutions Of Trigonometric Equations

A value of the unknown angle which satisfies the given equation is called a solution of the trigonometric equation.

(a) Principal solution – The solution of the trigonometric equation lying in the interval [0, 2π).

(b) General solution – Since all the trigonometric functions are many one & periodic, hence there are infinite values of θ for which trigonometric functions have the same value. All such possible values of θ for which the given trigonometric function is satisfied is given by a general formula. Such a general formula is called general solution of trigonometric equation.

(c) Particular solution – The solution of the trigonometric equation lying in the given interval. 

S. No.

Equation

Interval in which principal solution α

General solution

1.

sinθ = k,

(–1 ≤ k ≤ 1)

[−2π​,2π​]

θ = nπ + (–1)n α,

n∈Z

2.

cosθ = k,

(–1 ≤ k ≤ 1)

[0, π]

θ = 2nπ ± α,

n∈Z

3.

tanθ = k,

(k∈R)

(−2π​,2π​)

θ = nπ + α,

n∈Z

4.

cosecθ = k,

k ∈(–∞,–1]∪[1, ∞)

[−2π​,2π​]−{0}

θ = nπ + (–1)n α,

n∈Z

5.

secθ = k,

k ∈(–∞,–1]∪[1, ∞)

[0,π]∖{2π​}

θ = 2nπ ± α,

n∈Z

6.

cotθ = k,

k ∈ R

(0, π)

θ = nπ + α,

n∈Z

2.0General Solutions of Some Trigonometric Equations

(a) If sin θ = 0, then θ = nπ, n ∈ I (set of integers) 

(b) If cos θ = 0, then θ = (2n+1) 2π​ , n ∈ I

(c) If tan θ = 0, then θ = nπ, n ∈ I

(d) If sin θ = sin α, then θ = nπ + (–1)nα ; where α∈[−2π​,2π​] , n ∈ I

(e) If cos θ = cos α, then θ = 2nπ ± α ; where n ∈ I and α ∈ [0,π]

(f) If tan θ = tan α, then θ = nπ + α ; where n ∈ I and α∈[−2π​,2π​]

(g) If sin θ =1, then θ = 2nπ + 2π​ = (4n + 1) 2π​ ; where n ∈ I

(h) If cos θ = 1 then θ = 2nπ ; where n ∈ I

(i) If sin2 θ = sin2 α or cos2 θ = cos2 α or tan2 θ = tan2 α 

then θ = nπ ± α ; where n ∈ I

(j) For n ∈ I, sin nπ = 0 and cos nπ = (–1)n

sin (nπ + θ) = (–1)n sin θ

cos (nπ + θ) = (–1)n cos θ

(k) If n is an odd integer, then sin2nπ​=(−1)2n−1​,cos2nπ​=0, sin(2nπ​+θ)=(−1)2n−1​cosθ, cos(2nπ​+θ)=(−1)2n+1​sinθ

3.0Techniques for Simplifying and Solving Trigonometric Equations

Solving Trigonometric Equations by Factorisation

e.g. (2 sin x – cos x) (1 + cos x) = sin2x

⇒ (2 sin x – cos x) (1 + cos x) – (1 – cos2x) = 0

⇒  (1 + cos x) (2 sin x – cos x – 1 + cos x) = 0

⇒ (1 + cos x) (2 sin x – 1) = 0

⇒ cos x = –1 or sin x = 21​

⇒ cosx = – 1 = cosπ  

⇒ x = 2nπ ± π = (2n ± 1)π, n ∈ I

or sinx = 21​=sin6π​

⇒  x = kπ + (–1)k 6π​ , k ∈ I

Solving Trigonometric Equations by Introducing an Auxiliary Argument

Consider, a sin θ + b cos θ = c .....(i)

∴ a2+b2​a​sinθ+a2+b2​b​cosθ=a2+b2​c​

equation (i) has a solution only if |c| ≤a2+b2​

let a2+b2​a​=cosϕ,a2+b2​b​=sinϕ&ϕ=tan−1ab​ by introducing this auxiliary argument φ, equation (i) reduces to 

sin (θ + φ) = sin(θ+ϕ)=a2+b2​c​ , Now this equation can be solved easily.

4.0Solved Examples

1. Find the general value of x satisfying the equation 3​sinx+cosx=3​

Solution

We have 3​sinx+cosx=3​

Dividing both sides by a2+b2​ i.e. , 4​=2 we get

21​cosx+23​​sinx=23​​

⇒cosxcos3π​+sinxsin3π​=23​​

⇒cos(x−3π​)=cos6π​

⇒x−3π​=2nπ±6π​,n∈I

x−2π​=2nπ+6π​,x−2π​=2nπ−6π​;n∈I

Solving Trigonometric Equation by Reducing it to a Quadratic Equation

e.g. 6 – 10cosx = 3sin2x 

⇒ 6 – 10cosx = 3 – 3cos2x

⇒ 3cos2x – 10cosx + 3 = 0

⇒ 3cosx – 1) (cosx – 3) = 0

⇒ cosx = 31​ or cosx = 3

cosx = 3 is not possible as – 1 ≤ cosx ≤ 1

∴ cosx = 31​ = cos (cos−131​)

⇒ x = 2nπ ± cos–1 (31​),n∈I

Solved Examples

1. Solve sin2θ − cosθ = 41​ for θ and write the values of θ in the interval 0 ≤ θ ≤ 2π.

Solution

The given equation can be written as

1 – cos2θ – cosθ = 41​

⇒ cos2θ + cosθ – 3/4 = 0

⇒ 4cos2θ + 4cosθ – 3 = 0

⇒ (2cosθ – 1)(2cosθ + 3) = 0

⇒ cosθ = 21​,−23​

Since, cosθ = –3/2 is not possible as –1 ≤ cosθ ≤ 1

∴ cosθ=21​

cosθ=cos3π​⟹θ=2nπ±3π​,n∈I

For the given interval, n = 0 and n = 1.

θ=3π​,35π​

2. Find the number of solutions of tanx + secx = 2cosx in [0, 2π].

Solution

Here, tanx + secx = 2cosx

⇒ sinx + 1 = 2 cos2x

⇒ 2sin2x + sinx – 1 = 0

⇒ sinx =21​ , – 1

But sinx = –1 ⇒ x =  23π​ for which tanx + secx = 2 cosx  is not defined.

Thus sinx =21​ ⇒ x = 6π​,65π​

⇒ number of solutions of tanx + secx = 2cos x is 2.

3. Solve the equation 5sin2x – 7sinx cosx + 16cos2 x = 4

Solution

To solve this equation we use the fundamental formula of trigonometric identities,

sin2x + cos2x = 1

writing the equation in the form,

5sin2x – 7sinx . cosx + 16cos2x = 4(sin2x + cos2x)

⇒ sin2x – 7sinx cosx + 12cos2 x = 0

dividing by cos2x on both side we get,

tan2x – 7tanx + 12 = 0

Now it can be factorized as :

(tanx – 3)(tanx – 4) = 0

⇒ tanx = 3, 4 ⇒ x = nπ + tan–1 3

or x = mπ + tan–1 4, m ∈ I.

4. If x ≠ 2nπ​ , n ∈ I and (cosx)sin2x−3sinx+2=1, then find the general solutions of x.

Solution

As  2nπ​ ⇒ cos x ≠ 0, 1, – 1

So, (cosx)sin2x−3sinx+2=1

⇒ sin2x – 3sinx + 2 = 0 ⇒ (sinx – 2) (sinx – 1) = 0

⇒ sinx = 1, 2

where sinx = 2 is not possible and sinx = 1 which is also not possible as x=2nπ​

∴ No solution is possible.

5. Solve the equation sin4x + cos4 27​ sinx.cosx.

Solution

sin4x + cos4x = 27​ sinx.cosx

⇒ (sin2x + cos2x)2 – 2sin2x cos2 27​ sinx.cosx

⇒ 1−21​(sin2x)2=47​(sin2x) ⇒ 2sin22x + 7sin2x – 4 = 0

⇒ (2sin2x –1)(sin2x + 4) = 0

⇒ sin2x = 21​ or sin2x = –4 (which is not possible)

⇒ 2x = nπ + (–1)n 6π​ , n ∈ I  

i.e., x=2nπ​+(−1)n12π​,n∈I

Solving Trigonometric Equations by Introducing an Auxiliary Argument

Consider, a sin θ + b cos θ = c .....(i)

∴ a2+b2​a​sinθ+a2+b2​b​cosθ=a2+b2​c​

equation (i) has a solution only if |c| ≤ a2+b2​

let a2+b2​a​=cosϕ,a2+b2​b​=sinϕandϕ=tan−1ab​ by introducing this auxiliary argument φ, equation (i) reduces to sin (θ + φ) = a2+b2​c​ , Now this equation can be solved easily.

6. Find the number of distinct solutions of secx + tanx = secx+tanx=3​ , where 0 ≤ x ≤ 3π.

Solution

Here, sec x + tanx = 3​

Example for questions Find the number of distinct solutions of secx + tanx  , where 0 ≤ x ≤ 3π.

⇒ 1 + sinx =3​ cosx

or 3​ cosx – sinx = 1

dividing both sides by a2+b2​ i.e.4​=2 , we get 23​​cosx−21​sinx=21​

⇒cos6π​cosx−sin6π​sinx=21​

⇒cos(x+6π​)=21​

As 0 ≤ x ≤ 3π

6π​≤x+6π​≤3π+6π​

x+6π​=3π​,35π​,37π​

x=6π​,23π​,613π​

But at x=23π​ ; tanx and secx is not defined.

∴ Total number of solutions are 2.

7. Find the general value of x satisfying the equation 3​sinx+cosx=3​

Solution

We have 3​sinx+cosx=3​

Dividing both sides by a2+b2​ i.e.4​=2, we get 21​cosx+23​​sinx=23​​.

⇒cosxcos3π​+sinxsin3π​=23​​

⇒cos(x−3π​)=cos6π​

⇒x−3π​=2nπ±6π​,n∈I

⇒x−3π​=2nπ+6π​,+x−3π​=2nπ+6π​n∈Z.

⇒x=2nπ+2π​,x=2nπ+2π​;n∈Z.

5.0Techniques Of Trigonometric Equations Solution

Solving Trigonometric Equations By Transforming Sum Of Trigonometric Functions Into Product

e.g. cos 3x + sin 2x – sin 4x = 0

cos 3x – 2 sin x cos 3x = 0

⇒ (cos3x) (1 – 2sinx) = 0

⇒ cos3x = 0 or sinx = 21​

⇒ cos3x = 0 = cos 2π​ or sinx = 21​ = sin 6π​

⇒ 3x = 2nπ ± 2π​ or x = mπ + (–1)m 6π​

⇒ x = 32nπ​±6π​

or x = mπ + (–1)m 6π​ ; (n, m ∈ I)

Solving trigonometric equations by a change of variable 

(i) Equations of the form P (sin x ± cos x) = 0, P(sin x. cos x) = 0 can be solved by the substitution, cos x ± sin x = t   ⇒  1 ± 2 sin x. cos x = t2.  

(ii) Equations of the form of asinx + bcosx + d = 0, where a, b & d are real numbers can be solved by changing sin x & cos x into their corresponding tangent of half the angle. 

(iii) Many equations can be solved by introducing a new variable.

Solved Examples

1. Solve : cos x + cos 2x + cos 3x = 0.

Solution

cos x + cos 2x + cos 3x = 0

We shall rearrange and use the transformation formula cos 2x + (cos x + cos 3x) = 0

By using the formula, cosA+cosB=2cos(2A+B​)cos(2A−B​)

⇒ cos 2x + 2cos(23x+x​)cos(23x−x​)=0

⇒ cos 2x + 2cos 2x cos x = 0

⇒ cos 2x ( 1 + 2 cos x) = 0

⇒ cos 2x = 0   or 1 + 2cos x = 0

⇒ cos 2x = 0 or cos x = −21​

⇒ cos2x=cos2π​orcosx=cos(π−3π​)

⇒ cos2x=cos2π​orcosx=cos(32π​)

⇒ 2x=(2n+1)2π​orx=2mπ±32π​

⇒ x=(2n+1)4π​orx=2mπ±32π​

∴ the general solution is

x = (2n + 1) 4π​ or 2mπ ± 32π​ , where m, n ϵ I

e.g. sin5x. cos3x = sin6x. cos2x

sin8x + sin2x = sin8x + sin4x

∴ 2sin2x . cos2x – sin2x = 0

⇒ sin2x(2 cos 2x – 1) = 0

sin2x = 0  or 2 cos 2x – 1= 0

sin2x = 0 = sin0

⇒ 2x = nπ + (–1)n × 0, n ∈ I 

⇒ x = 2nπ​ , n ∈ I or 

2 cos 2x – 1= 0

⇒ cos2x = 21​

⇒ cos2x = 21​ = cos 3π​

⇒ 2x = 2mπ ± 3π​ ,  m ∈ I

⇒ x = mπ ± 6π​ , m ∈ I

2. Find the number of solutions in [0,2π​] of the equation cos3x tan5x = sin7x. 

Solution

We have cos3x tan5x = sin7x 

⇒  cos3x(cos5xsin5x​)=sin7x

⇒ 2cos3x sin5x = 2cos 5x sin7x

⇒ sin8x + sin2x = sin12x + sin2x

⇒ sin12x – sin8x = 0

⇒ 2sin2x cos10x = 0

If sin 2x = 0, then x∈[0,2π​]

If cos 10x = 0, then

10x=2π​,23π​

⇒x=20π​,203π​,205π​,207π​,209π​

So, there are 6 possible solutions. 

3. Solve : cosθ + cos3θ + cos5θ + cos7θ = 0

Solution

We have cosθ + cos7θ + cos3θ + cos5θ = 0

⇒ 2cos4θcos3θ + 2cos4θcosθ = 0   

⇒ cos4θ(cos3θ + cosθ) = 0

⇒ cos4θ(2cos2θcosθ) = 0

⇒  cosθ = 0 ⇒   θ = (2n1 + 1) (2π​) ,  n1 ∈ I

or cos2θ = 0  ⇒  θ = (2n2 + 1) (4π​) , n2 ∈ I

or cos4θ = 0 ⇒  θ = (2n3 + 1) (8π​) , n3 ∈ I

Solving trigonometric equations with the use of the boundness of the functions involved

4. Solve : sinx(cos4x​−2sinx)+(1+sin4x​−2cosx)⋅cosx=0.

Solution

sinx(cos4x​−2sinx)+(1+sin4x​−2cosx)⋅cosx=0.

∴ sin x cos 4x​+cosxsin 4x​+cos x=2

∴ sin (45x​)+cosx=2

⇒ sin (45x​)=1 & cos x =1 (as sin θ ≤ 1 & cos θ ≤ 1)

Now consider

cosx = 1

⇒ x = 2π, 4π, 6π, 8π .......

And sin 45x​=1

⇒ x = 52π​,510π​,518π​ ......

Common solution to above APs will be the AP having 

First term = 2π

Common difference = LCM of 2π and 58π​=540π​=8π

∴ General solution will be general term of this AP i.e. 2π + (8π)n, n ∈ I

⇒ x = 2(4n + 1)π, n ∈ I

5. Solve the equation (sinx + cosx)1+sin2x = 2, when 0≤x≤π

Solution

We know, −a2+b2​≤asinθ+bcosθ≤a2+b2​ and –1 ≤ sinθ ≤ 1.

∴ (sinx + cosx) admits the maximum value as 2​ and (1 + sin 2x) admits the maximum value as 2.

Also (2​)2=2

∴ the equation could hold only when, sinx + cosx = 2​ and 1 + sin 2x = 2

Now, sinx + cos x = 2​

⇒  cos(x−4π​)=1

⇒ x = 2nπ + 4π​ , n ∈  I ...... (i)

and  1 + sin 2x = 2

⇒ sin2x = 1 = sin 2π​

⇒ 2x = mπ + (–1)m 2π​ , m ∈ I  

⇒ x=2mπ​+(−1)m4π​ ...... (ii)

The value of x in [0, π] satisfying equations (i) and (ii) is x = 4π​

(when n = 0 & m = 0)     

Note :- sin x + cos x = −2​ and 1 + sin 2x = 2 also satisfies but as x > 0, this solution is not in domain.

6. Find the set of values of x for which 1+tan3x⋅tan2xtan3x−tan2x​=1.

Solution

We have, 1+tan3x⋅tan2xtan3x−tan2x​=1.

⇒ tan (3x – 2x) = 1 

⇒  tan x = 1

⇒ tan x = tan 4π​

⇒ x = nπ +4π​ , n ∈ I {using tanθ = tanα ⇔ θ = nπ + α}

But for this value of x, tan 2x is not defined. Hence the solution set for x is φ.

6.0Also Read

Standard Units of Measurement

Angles

Introduction to Numbers

Ascending Order

Horizontal Line

Roman Numerals

Area of Irregular Shapes

Laws of Exponents

Rounding Numbers

Table of Contents


  • 1.0Solutions Of Trigonometric Equations
  • 2.0General Solutions of Some Trigonometric Equations
  • 3.0Techniques for Simplifying and Solving Trigonometric Equations
  • 3.1Solving Trigonometric Equations by Factorisation
  • 3.2Solving Trigonometric Equations by Introducing an Auxiliary Argument
  • 4.0Solved Examples
  • 4.1Solving Trigonometric Equation by Reducing it to a Quadratic Equation
  • 4.2Solving Trigonometric Equations by Introducing an Auxiliary Argument
  • 5.0Techniques Of Trigonometric Equations Solution
  • 6.0Also Read

Join ALLEN!

(Session 2026 - 27)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Classroom Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET Previous Year Papers
    • NEET Sample Papers
    • JEE Main Sample Papers
    • CBSE Sample Papers
    • NCERT Textbooks
    • JEE Mains Mock Test

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO