Home
Class 11
PHYSICS
If |vec(A)+vec(B)|=|vec(A)|=|vec(B)| the...

If `|vec(A)+vec(B)|=|vec(A)|=|vec(B)|` then the angle between `vec(A)` and `vec(B)`is

A

`90^(@)`

B

`120^(@)`

C

`0^(@)`

D

`60^(@)`

Text Solution

Verified by Experts

The correct Answer is:
C

Resultant of two vector `vec(A)` and `vec(B)` can be given by
`vec(R )= vec(A)+vec(B)`
`|vec(R )|=vec(A)+vec(B)|= sqrt(A^(2)+B^(2)+2AB cos theta)`
If `theta= 0^(@)` then `|vec(R )|=A+B= |vec(A)|+|vec(B)|`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    A2Z|Exercise Expressing Vectors In Unit Vector Notation|22 Videos
  • VECTORS

    A2Z|Exercise Dot Product|22 Videos
  • VECTORS

    A2Z|Exercise Chapter Test|29 Videos
  • UNIT, DIMENSION AND ERROR ANALYSIS

    A2Z|Exercise Chapter Test|28 Videos
  • WAVES AND ACOUSTICS

    A2Z|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then find the angle between vec(A) and vec(B)

If |vec(A)+vec(B)| = |vec(A)-vec(B)| , find the angle between vec(A) and vec(B) .

Knowledge Check

  • If |vec(A) xx vec(B)| = |vec(A).vec(B)| , then the angle between vec(A) and vec(B) will be :

    A
    `30^(@)`
    B
    `45^(@)`
    C
    `60^(@)`
    D
    `75^(@)`
  • If |vec(A)xxvec(B)|=|vec(A)*vec(B)| ,then the angle between vec(A) and vec(B) will be

    A
    `30^(@)`
    B
    `45^(@)`
    C
    `60^(@)`
    D
    `90^(@)`
  • If |vec(A)+vec(B)|=|vec(A)|+|vec(B)|, then angle between vec(A)and vec(B) will be

    A
    `90^(@)`
    B
    `120^(@)`
    C
    `0^(@)`
    D
    `60^(@)`
  • Similar Questions

    Explore conceptually related problems

    Two vectors vec(A) and vec(B) are such that |vec(A)+vec(B)|=|vec(A)-vec(B)| then what is the angle between vec(A) and vec(B) :-

    If vec(A) and vec(B) are two non - zero vectors such that |vec(A)+vec(B)|=(|vec(A)-vec(B)|)/(2) and |vec(A)|=2|vec(B)| then the angle between vec(A) and vec(B) is :

    If vec(A) and vec(B) are two non-zero vectors such that |vec(A) +vec(B)|=(|vec(A)-vec(B)|)/(2) and |vec(A)|=2|vec(B)| then the angle between vec(A) and vec(B) is :

    If |vec(A) xx vec(B)| = |vec(A).vec(B)| , then angle between vec(A) and vec(B) will be :

    Assertion: If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then angle between vec(A) and vec(B) is 90^(@) Reason: vec(A)+vec(B)= vec(B)+vec(A)