Home
Class 12
MATHS
Statement -1 If Delta(r)=|{:(r,r+1),(r+3...

Statement -1 If `Delta(r)=|{:(r,r+1),(r+3,r+4):}|` then `sum_(r=1)^(n) Delta(r)=-3n`
Satement-2 If `Delta(r)|{:(f_(1)(r),f_(2)(r)),(f_(3)(r),f_(4)(r)):}|`
`Sigma_(r=1)^(n) Delta (r)={:abs((Sigma_(r=1)^(n)f_1(r),Sigma_(r=1)^(n)f_2(r)),(Sigma_(r=1)^(n)f_3(r),Sigma_(r=1)^(n) f_4(r))):}`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

sum_(r=1)^(n)(1)/((r+1)(r+2))*^(n+3)C_(r)=

Knowledge Check

  • Sigma_(r=0)^(n)((r^(2))/(r+1)).^(n)C_(r) is equal to

    A
    `(2^(n-1)(n^(2)+n+2)-1)/((n+1))`
    B
    `(2^(n-1)(n^(2)-n-2)+1)/((n+1))`
    C
    `(2^(n-1)(n^(2)-n+2)-1)/((n+1))`
    D
    `(2^(n-1)(n^(2)+n-2)+1)/((n+1))`
  • Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

    A
    `n^(2)(.^(2n-1)C_(n))`
    B
    `n^(2)(.^(2n)C_(n-1))`
    C
    `n^(2)(.^(2n-1)C_(n-1))`
    D
    `m^(2)(.^(2n-2)C_(n))`
  • Lt_(n rarr oo) Sigma_(r=1)^(n) (1)/(n) e^(r//n) =

    A
    e
    B
    `e-1`
    C
    `1-e`
    D
    `e+1`
  • Similar Questions

    Explore conceptually related problems

    If Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3) then find Sigma_(r=1)^(n) 1/T_r

    Find the sum Sigma_(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma_(r=1)^(oo) 1/(r(r+1)(r+2)(r+3))

    Find the value of (Sigma_(r=1)^(n) 1/r)/(Sigma_(r=1)^(n) k/((2n-2k+1)(2n-k+1))) .

    If sum_(r=1)^(n)I(r)=2^(n)-1 then sum_(r=1)^(n)(1)/(I_(r)) is

    If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to