Home
Class 11
PHYSICS
If vec F =2 hat i + 3hat j +4hat k acts ...

If `vec F =2 hat i + 3hat j +4hat k` acts on a body and displaces it by `vec S =3 hat i + 2hat j + 5 hat k`, then the work done by the force is

A

12 J

B

20 J

C

32 J

D

64 J

Text Solution

AI Generated Solution

The correct Answer is:
To find the work done by the force \(\vec{F}\) on the body during the displacement \(\vec{S}\), we can use the formula for work done, which is given by the dot product of the force vector and the displacement vector: \[ W = \vec{F} \cdot \vec{S} \] ### Step 1: Identify the vectors Given: \[ \vec{F} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ \vec{S} = 3\hat{i} + 2\hat{j} + 5\hat{k} \] ### Step 2: Calculate the dot product The dot product \(\vec{F} \cdot \vec{S}\) is calculated as follows: \[ \vec{F} \cdot \vec{S} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \cdot (3\hat{i} + 2\hat{j} + 5\hat{k}) \] Using the properties of the dot product, we can expand this: \[ = 2 \cdot 3 + 3 \cdot 2 + 4 \cdot 5 \] ### Step 3: Perform the multiplication Calculating each term: \[ = 6 + 6 + 20 \] ### Step 4: Sum the results Now, add the results together: \[ = 6 + 6 + 20 = 32 \] ### Conclusion Thus, the work done by the force is: \[ W = 32 \, \text{Joules} \] ---

To find the work done by the force \(\vec{F}\) on the body during the displacement \(\vec{S}\), we can use the formula for work done, which is given by the dot product of the force vector and the displacement vector: \[ W = \vec{F} \cdot \vec{S} \] ### Step 1: Identify the vectors Given: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • WORK POWER AND ENERGY

    NARAYNA|Exercise Level- II (C.W)|68 Videos
  • WORK POWER AND ENERGY

    NARAYNA|Exercise Level- III (C.W)|50 Videos
  • WORK POWER AND ENERGY

    NARAYNA|Exercise C.U.Q-Key|75 Videos
  • WORK , ENERGY & POWER

    NARAYNA|Exercise EXERCISE IV|43 Videos

Similar Questions

Explore conceptually related problems

A force vec(F) = (2hat(i) - 3hat(j) +7hat(k)) N is applied on a particle which displaces it by vec(S) = (4hat(i)+5hat(j) +hat(k)) . Find the work done on the particle .

A body is displaced from vec r_(A) =(2hat i + 4hatj -6hat k) to vecr_(B) = (6hat i -4hat j +3 hat k) under a constant force vec F = (2 hat i + 3 hat j - hat k) . Find the work done.

Knowledge Check

  • A force (3 hat(i)+4 hat(j)) acts on a body and displaces it by (3 hat(i)+4 hat(j))m . The work done by the force is

    A
    10 J
    B
    12 J
    C
    16 J
    D
    25 J
  • A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

    A
    9 units
    B
    7 units
    C
    9 units
    D
    10 units
  • A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3 hat(k)) to the point B(3hat(i) - hat(j)+5hat(k)) . The work done by the force will be

    A
    5 units
    B
    7 units
    C
    9 units
    D
    10 units
  • Similar Questions

    Explore conceptually related problems

    Given four forces : vec F_1 = 3 hat i - hat j + 9 hat k vec F_2 = 2 hat i - 2 hat j + 16 hat k vec F_3 = 9 hat i + hat j + 18 hat k vec F_4= hat i + 2 hat j - 18 hat k If all these forces act on a particle at rest at the origin of a coordinate system, then identify the plane in which the particle would begin to move ?

    If vec a= hat i+ hat j+ hat k , vec adot vec b=2 and vec ax vec b=2 hat i+ hat j-3 hat k , then vec a+ vec b=5 hat i-4 hat j+2 hat k (b) vec a+ vec b=3 hat i+2 vec k vec b=2 hat i- hat j+ hat k (d) vec b= hat i-2 hat j-3 hat k

    Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d vec c= hat i+ hat j-2 hat k be three vectors. A vector in the plane of vec ba n d vec c , whose projection on vec a is of magnitude sqrt(2//3) , is a. 2 hat i+3 hat j-3 hat k b. 2 hat i-3 hat j+3 hat k c. -2 hat i- hat j+5 hat k d. 2 hat i+ hat j+5 hat k

    If vec a=4hat i+3hat j+hat k and vec b=hat i-2hat k, then find |2hat bxvec a|

    A force vec(F)=3hat(i)+chat(j)+2hat(k) acting on a particle causes a displacement vec(d)=-4hat(i)+2hat(j)+3hat(k) . If the work done is 6J then the value of 'c' is