Home
Class 12
MATHS
Let y be an implicit function of x de...

Let `y` be an implicit function of `x` defined by `x^(2x)-2x^xcot y-1=0.` Then `y '(1)` equals: `1` b. `log2` c. `-log2` d. `-1`

A

-1

B

1

C

log 2

D

`-log 2

Text Solution

Verified by Experts

The correct Answer is:
A

`x^(2x)-2x^(x)cot y-1=0" (i)"`
Now at x=1,
`1-2 cot y-1=0rArrcot y =0 rArry=(pi)/(2)`
Now differentiating (i) w.r.t. x, we get
`2x^(2x)(1+log x)-2[x^(x)(-cosec^(2)y)(dy)/(dx)+cot x^(2)(1+log x)]=0`
`"Now at "(1,pi//2)`,
`2(1+log 1)-2[1(-1)((dy)/(dx))_(((1,pi//2)))+0]=0`
`rArr" "2+2((dy)/(dx))_(((1,pi//2)))=0`
`((dy)/(dx))_(((1,pi//2)))=-1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answers Type|3 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Numerical)|41 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let y be an implicit function of x defined by x^(2x)-2x^(x)coty-1=0. Then y'(1) equals: 1 b.log2 c.-log2d.-1

Let y be an implicit function of x defined by x^2x ""2x^xcoty""""1""=""0 . Then y (1) equals (1) 1 (2) 1 (3) log""2 (4) ""log2

Knowledge Check

  • Let y be an implicit function of x defined by x^(2x)-2x^(x)cot y-1=0 . Tthen y'(1) equals

    A
    `log2`
    B
    `-log2`
    C
    `-1`
    D
    1
  • Let y be an implicit function of x defined by x^(2x)-2x^(x)coty-1=0 . Then y'(1) equals

    A
    `log2`
    B
    `-log2`
    C
    `-1`
    D
    1
  • Let y be an implicit function of x defined by x^(2x)-2x^(x)coty-1=0 . Then y'(1) equals

    A
    `-1`
    B
    1
    C
    `log2`
    D
    `-log2`
  • Similar Questions

    Explore conceptually related problems

    at x 1 is Let y be an implicit function of x defined by x^2 r +2 x+ cot y -1= 0 then (B) 1 (D) None of these (C) -1

    If y is a function of x given by 2log(y-1)-log x-log(y-2)=0, then

    If ln(ln x-ln y)=e^(x^(2)y)(1-ln x) , then y'(e) equals

    If y is a function of x and log(x+y)-2xy=0 then the value of y(0) is equal to (a)1(b)-1( c) 2( d) 0

    If y is a function of x and ln(x+y)-2x y=0, then the value of y^(prime)(0) is equal to 1 (b) -1 (c) 2 (d) 0