Home
Class 12
MATHS
For xge 0 , the smallest value of the fu...

For `xge 0` , the smallest value of the function `f(x)=(4x^2+8x+13)/(6(1+x))`, is ________.

Text Solution

Verified by Experts

The correct Answer is:
2

`f(x) = (4x^(2) + 8x + 13)/(6(1 + x))`
`= (4(x + 1)^(2) + 9)/(6(1 + x))`
`= (2)/(3) (x + 1) + (3)/(2(x + 1))`
`ge 2 sqrt((2)/(3).(3)/(2)) = 2`
Therefore, minimum value of f(x) is 2.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Comprehension)|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

For x>=0, the smallest value of the function f(x)=(4x^(2)+8x+13)/(6(1+x)), is

The smallest value of the function f(x)=3|x+1|+|x|+3|x-1|+2|x-3|

Knowledge Check

  • For x ge 0 , the smallest value of funcation f(x) = (4x^(2) + 8x + 13)/(6(1 + x)) is

    A
    `1`
    B
    `2`
    C
    `(25)/(12)`
    D
    `(13)/(6)`
  • The maximum value of the function f(x)= x^(2)+2x^(2)-4x+6 exits at

    A
    x=-2
    B
    x=1
    C
    x=2
    D
    x=-1
  • The maximum value of the function f(x) =x^(3) + 2x^(2) -4x + 6 exists at:

    A
    `x=-2`
    B
    x=1
    C
    x=2
    D
    `x=-1`
  • Similar Questions

    Explore conceptually related problems

    The function f(x)=2+4x^(2)+6x^(4)+8x^(6) has

    Find the greatest and least values of function f(x)=3x^(4)-8x^(3)-18x^(2)+1

    the function f(x)=(x^(2)+4x+30)/(x^(2)-8x+18) is not one- to-one.

    Is the function: f(x) = (x^(2) - 8x + 18)/(x^(2) + 4x + 30) one-one?

    Find the smallest integral value of x satisfying (x-2)^(x^(2)-6x+8))>1