Home
Class 12
MATHS
Find the shortest distance between the g...

Find the shortest distance between the given line
`vec(r )=(hat(i) +hat(j)) +lambda(2hat(i) -hat(j) +hat(k))`
`vec(r )=(2hat(i) +hat(j) -hat(k)) + mu (3hat(i) -5hat(j) +2hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the given lines, we will follow these steps: ### Step 1: Identify the points and direction vectors of the lines The given lines are: 1. \(\vec{r_1} = \hat{i} + \hat{j} + \lambda(2\hat{i} - \hat{j} + \hat{k})\) 2. \(\vec{r_2} = (2\hat{i} + \hat{j} - \hat{k}) + \mu(3\hat{i} - 5\hat{j} + 2\hat{k})\) From these equations, we can identify: - For line 1: - Point \(A_1 = \hat{i} + \hat{j}\) - Direction vector \(B_1 = 2\hat{i} - \hat{j} + \hat{k}\) - For line 2: - Point \(A_2 = 2\hat{i} + \hat{j} - \hat{k}\) - Direction vector \(B_2 = 3\hat{i} - 5\hat{j} + 2\hat{k}\) ### Step 2: Calculate \(A_2 - A_1\) Next, we find the vector between the two points \(A_2\) and \(A_1\): \[ A_2 - A_1 = (2\hat{i} + \hat{j} - \hat{k}) - (\hat{i} + \hat{j}) = (2\hat{i} - \hat{i}) + (\hat{j} - \hat{j}) + (-\hat{k}) = \hat{i} - \hat{k} \] ### Step 3: Calculate the cross product \(B_1 \times B_2\) Now, we need to find the cross product of the direction vectors \(B_1\) and \(B_2\): \[ B_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix} \] Using the determinant method to find \(B_1 \times B_2\): \[ B_1 \times B_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -5 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-1)(2) - (1)(-5)) - \hat{j}((2)(2) - (1)(3)) + \hat{k}((2)(-5) - (-1)(3)) \] \[ = \hat{i}(-2 + 5) - \hat{j}(4 - 3) + \hat{k}(-10 + 3) \] \[ = 3\hat{i} - 1\hat{j} - 7\hat{k} \] ### Step 4: Calculate the magnitude of the cross product Now, we find the magnitude of \(B_1 \times B_2\): \[ |B_1 \times B_2| = \sqrt{3^2 + (-1)^2 + (-7)^2} = \sqrt{9 + 1 + 49} = \sqrt{59} \] ### Step 5: Calculate the shortest distance The shortest distance \(d\) between the two lines is given by the formula: \[ d = \frac{|(A_2 - A_1) \cdot (B_1 \times B_2)|}{|B_1 \times B_2|} \] Calculating the dot product \((A_2 - A_1) \cdot (B_1 \times B_2)\): \[ A_2 - A_1 = \hat{i} - \hat{k} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \] \[ B_1 \times B_2 = \begin{pmatrix} 3 \\ -1 \\ -7 \end{pmatrix} \] Now, the dot product: \[ (A_2 - A_1) \cdot (B_1 \times B_2) = (1)(3) + (0)(-1) + (-1)(-7) = 3 + 0 + 7 = 10 \] Now substituting into the distance formula: \[ d = \frac{|10|}{\sqrt{59}} = \frac{10}{\sqrt{59}} \] ### Final Answer Thus, the shortest distance between the given lines is: \[ \frac{10}{\sqrt{59}} \text{ units} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Exercise 27E|6 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Exercise 27F|23 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Exercise 27C|13 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos

Similar Questions

Explore conceptually related problems

vec(r ) =(6hat(i) +3hat(k) ) + lambda(2hat(i) -hat(j) +4hat(k)) vec(r )=(-9hat(i) +hat(j) -10hat(k)) + mu (4hat(i) +hat(j) +6hat(k))

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

vec(r )=(hat(i) +2hat(j) +hat(k)) + lambda(hat(i)-hat(j) + hat(k)) vec(r )=(2hat(i) -hat(j) -hat(k)) + lambda(2hat(i) + hat(j) +2hat(k))

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Find the shortest distance between the lines: vec(r) = hat(i) + 2 hat(j) - 3 hat(k) + lambda (3 hat(i) - 4 hat(j) - hat(k)) and vec(r) = 2 hat(i) - hat(j) + hat(k) + mu (hat(i) + hat(j) + 5 hat(k)) .

Compute the shortest distance between the lines vec(r )=(hat(i) -hat(j)) + lambda (2hat(i) -hat(k)) " and " vec(r ) =(2hat(i) -hat(j)) + mu (hat(i) - hat(j) -hat(k)) Determine whether these lines intersect of not.

Find the shortest distance between the lines L_(1) " and " L_(2) given by vec( r )=hat(i) +hat(j) +lambda(2hat(i)-hat(j)+hat(k)) " and " vec(r )=2hat(i) +hat(j)-hat(k) +mu (4hat(i) -2hat(j) +2hat(k))

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

Show that the lines vec(r ) =(hat(i) -hat(j)) +lambda (2hat(i)+ hat(k)) " and " vec(r ) =(2hat(i) -hat(j)) + mu (hat(i)+ hat(j) -hat(k)) do not intersect .

vec(r ) =(3hat(i) +hat(j)-2hat(k)) +lambda (hat(i)-hat(j)-2hat(k)) " and " vec(r ) =(2hat(i) -hat(j) -5hat(k)) + mu (3hat(i) -5hat(j) -4hat(k)) FInd angle between the lines