Home
Class 12
MATHS
vec(r ) =(3hat(i) +hat(j)-2hat(k)) +lamb...

`vec(r ) =(3hat(i) +hat(j)-2hat(k)) +lambda (hat(i)-hat(j)-2hat(k)) " and " vec(r ) =(2hat(i) -hat(j) -5hat(k)) + mu (3hat(i) -5hat(j) -4hat(k))` FInd angle between the lines

Text Solution

Verified by Experts

The correct Answer is:
`cos^(-1) .((8sqrt(3))/(15))`
Promotional Banner

Similar Questions

Explore conceptually related problems

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

vec(r ) =(hat(i) +2hat(j) +3hat(k)) + lambda(hat(i) -3hat(j) +2hat(k)) vec(r ) =(4hat(i) +5hat(j) +6hat(k)) + mu (2hat(i) + hat(j) +2hat(k)) Find the the shortest between the lines

vec(r ) =(3hat(i) -4hat(j) +2hat(k)) + lambda (hat(i)+3hat(k)) " and " vec(r ) = 5hat(i) + mu (-hat(i) +hat(j) + hat(k)) Find angle between the lines .

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Show that the lines vec( r) =(hat(i) +hat(j) -hat(k)) +lambda (3hat(i) -hat(j)) " and " vec( r) =(4hat(i) -hat(k)) + mu (2hat(i) +3hat(k)) intersect . Find the point of the intersection.