Home
Class 12
MATHS
The shortest distance between line (x-3)...

The shortest distance between line `(x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and`
`(x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is`

Text Solution

Verified by Experts

The correct Answer is:
`3sqrt(30) " units "(x-3)/(2)=(y-8)/(5)=(z-3)/(-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is a.sqrt(30)b.2sqrt(30)c.5sqrt(30)d.3sqrt(30)

If the shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is lambdasqrt(30) unit, then the value of lambda is

Find the shortest distance between the lines (x-6)/(3)=(y-7)/(-1)=(z-4)/(1) and (x)/(-3)=(y-9)/(2)=(z-2)/(4)

The shortest distance between the lines (x-2)/(2)=(y-3)/(2)=(z-0)/(1) and (x+4)/(-1)=(y-7)/(8)=(z-5)/(4) lies in the interval

The shortest distance between the lines (x-2)/(3)=(y+3)/(4)=(z-1)/(5) and (x-5)/(1)=(y-1)/(2)=(z-6)/(3) , is

Find the shortest distance between the lines (x-1)/(2)=(y-2)/(3)=(z-3)/(4) and (x-2)/(3)=(y-4)/(4)=(z-5)/(5)

Equation of the line of the shortest distance between the lines (x)/(2)=(y)/(-3)=(z)/(1) and (x-2)/(3)=(y-1)/(-5)=(z+2)/(2) is