Home
Class 12
MATHS
Find the shortest distance between the g...

Find the shortest distance between the given line
`vec(r ) =(6hat(i) +3hat(k) ) + lambda(2hat(i) -hat(j) +4hat(k))`
`vec(r )=(-9hat(i) +hat(j) -10hat(k)) + mu (4hat(i) +hat(j) +6hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines, we will follow these steps: ### Step 1: Identify the lines The two lines are given in vector form: 1. \( \vec{r_1} = (6 \hat{i} + 3 \hat{k}) + \lambda(2 \hat{i} - \hat{j} + 4 \hat{k}) \) 2. \( \vec{r_2} = (-9 \hat{i} + \hat{j} - 10 \hat{k}) + \mu(4 \hat{i} + \hat{j} + 6 \hat{k}) \) ### Step 2: Extract points and direction vectors From the equations: - For line 1: - Point \( \vec{a_1} = 6 \hat{i} + 3 \hat{k} \) - Direction vector \( \vec{b_1} = 2 \hat{i} - \hat{j} + 4 \hat{k} \) - For line 2: - Point \( \vec{a_2} = -9 \hat{i} + \hat{j} - 10 \hat{k} \) - Direction vector \( \vec{b_2} = 4 \hat{i} + \hat{j} + 6 \hat{k} \) ### Step 3: Calculate \( \vec{a_2} - \vec{a_1} \) \[ \vec{a_2} - \vec{a_1} = (-9 \hat{i} + \hat{j} - 10 \hat{k}) - (6 \hat{i} + 3 \hat{k}) \] \[ = (-9 - 6) \hat{i} + (1 - 0) \hat{j} + (-10 - 3) \hat{k} \] \[ = -15 \hat{i} + 1 \hat{j} - 13 \hat{k} \] ### Step 4: Compute \( \vec{b_1} \times \vec{b_2} \) Using the determinant to find the cross product: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 4 \\ 4 & 1 & 6 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 4 \\ 1 & 6 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 4 \\ 4 & 6 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -1 \\ 4 & 1 \end{vmatrix} \] Calculating each determinant: \[ = \hat{i}((-1)(6) - (1)(4)) - \hat{j}((2)(6) - (4)(4)) + \hat{k}((2)(1) - (-1)(4)) \] \[ = \hat{i}(-6 - 4) - \hat{j}(12 - 16) + \hat{k}(2 + 4) \] \[ = -10 \hat{i} + 4 \hat{j} + 6 \hat{k} \] ### Step 5: Find the magnitude of \( \vec{b_1} \times \vec{b_2} \) \[ |\vec{b_1} \times \vec{b_2}| = \sqrt{(-10)^2 + 4^2 + 6^2} = \sqrt{100 + 16 + 36} = \sqrt{152} \] ### Step 6: Use the formula for shortest distance The formula for the shortest distance \( d \) between two skew lines is given by: \[ d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} \] ### Step 7: Calculate the dot product Calculating \( (\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2}) \): \[ (-15 \hat{i} + 1 \hat{j} - 13 \hat{k}) \cdot (-10 \hat{i} + 4 \hat{j} + 6 \hat{k}) \] \[ = (-15)(-10) + (1)(4) + (-13)(6) \] \[ = 150 + 4 - 78 = 76 \] ### Step 8: Substitute values into the distance formula \[ d = \frac{|76|}{\sqrt{152}} = \frac{76}{\sqrt{152}} = \frac{76}{\sqrt{4 \cdot 38}} = \frac{76}{2\sqrt{38}} = \frac{38}{\sqrt{38}} = \sqrt{38} \] ### Final Answer The shortest distance between the two lines is: \[ \sqrt{38} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Exercise 27E|6 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Exercise 27F|23 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Exercise 27C|13 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

vec(r )=(hat(i) +hat(j)) +lambda(2hat(i) -hat(j) +hat(k)) vec(r )=(2hat(i) +hat(j) -hat(k)) + mu (3hat(i) -5hat(j) +2hat(k))

vec(r )=(hat(i) +2hat(j) +hat(k)) + lambda(hat(i)-hat(j) + hat(k)) vec(r )=(2hat(i) -hat(j) -hat(k)) + lambda(2hat(i) + hat(j) +2hat(k))

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

vec(r ) =(hat(i)+2hat(j) -4hat(k)) + lambda(2hat(i) +3hat(j) +6hat(k)) vec(r )=(3hat(i) +3hat(j) -5hat(k)) + mu (-2hat(i) +3hat(j) +8hat(k))

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

Compute the shortest distance between the lines vec(r )=(hat(i) -hat(j)) + lambda (2hat(i) -hat(k)) " and " vec(r ) =(2hat(i) -hat(j)) + mu (hat(i) - hat(j) -hat(k)) Determine whether these lines intersect of not.

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by r=(3hat(i)+8hat(j)+3hat(k))+lambda(3hat(i)-hat(j)+hat(k)) and r=(-3hat(i)-7hat(j)+6hat(k))+mu(-3hat(i)+2hat(j)+4hat(k)) .

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by: vec(r) = (3 hat(i) + 8 hat(j) + 3 hat(k) ) + lambda (3 hat(i) - hat(j) + hat(k)) and vec(r) = (-3 hat(i) - 7 hat(j) + 6 hat(k)) + mu (-3 hat(i) + 2 hat(j) + 4 hat(k)) .

vec(r ) =(hat(i) +2hat(j) +3hat(k)) + lambda(hat(i) -3hat(j) +2hat(k)) vec(r ) =(4hat(i) +5hat(j) +6hat(k)) + mu (2hat(i) + hat(j) +2hat(k)) Find the the shortest between the lines