Home
Class 12
MATHS
Statement 1: Let vecr be any vector in s...

Statement 1: Let `vecr` be any vector in space. Then, `vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk`
Statement 2: If `veca, vecb, vecc` are three non-coplanar vectors and `vecr` is any vector in space then
`vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc`

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

Verified by Experts

The correct Answer is:
A

Since `veca,vecb, vecc` are non coplanar vectors.
Therefore, there exists scalars x,y,z such that
`vecr=xveca+yvecb+zvecc`……………..i
Taking dot products with `vecbxxvecc, veccxxveca` and `vecaxxvecb` successively, we get
`vecr.(vecbxxvecc)=(xveca+yvecb+zvecc).(vecbxxvecc)`
`vecr.(veccxxveca)=(xvecaxxyvecb+zvecc).(veccxxveca)`
`vecr.(vecaxxvecb)=(xveca+yvecb+zvecc).(vecaxxvecb)`
`implies[(vecr, vecb, vecc)]=x[(veca, vecb, vecc)]`
`=[(vecr, vecc, veca)]=y[(vecb, vecc, veca)]`
and `[(vecr, veca, vecb)]=z[(vecc, veca, vecb)]`
`impliesx=([(vecr, vecb, vecc)])/([(veca, vecb, vecc)]),y=([(vecy, vecc, veca)])/([(veca, vecb, vecc)])` and `z=([(vecr, veca, vecb)])/([(veca, vecb, vecc)])`
Substituting the alues of `x,y,z` in (i) we get
`vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vec)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca,vecb, vecc)])}vecc`
So, statement 2 is true.
On replacing `veca, vecb,` and `vecc` by `hati, hatj` and `hatk` respectively in statement -2 we obtain statement-1.
So, statement 1 is true and statement -2 is a correct explanation for statement -1
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|64 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+pveca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

Knowledge Check

  • If veca, vecb, vecc are three non-zero non-null vectors are vecr is any vector in space then [(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]vecc is equal to

    A
    `2[(veca, vecb, vecc)]vecr`
    B
    `3[(veca, vecb, vecc)]vecr`
    C
    `[(veca, vecb, vecc)]`
    D
    None of these
  • Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. Stetement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then [(veca,vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb=[(veca, vecb, vecc)]vecr

    A
    1
    B
    2
    C
    3
    D
    4
  • If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

    A
    `vecaxxvecb+vecbxxvecc+veccxxveca`
    B
    `1/([(veca, vecb, vecc)]){vecaxxvecb+vecbxxvec+veccxxveca}`
    C
    `[(veca, vecb, vecc)]{vecaxxvecb+vecbxxvecc+vecxxveca}`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

    veca,vecb and vecc are three non-coplanar vectors and r is any arbitrary vector. Prove that [[vecb, vecc,vec r]]veca + [[vecc, veca, vecr]]vecb +[[veca,vec b,vec r]]vecc = [[veca,vec b, vecc]]vecr

    If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

    If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

    veca, vecb,vecc are non-coplanar vectors and vecp,vecq,vecr are defined as vecp = (vecb xx vecc)/([vecb vecc veca]),q=(veca xx veca)/([vecc veca vecb]), vecr =(veca xx vecb)/([veca vecb vecc]) then (veca + vecb).vecp+(vecb+vecc).vecq + (vecc + veca).vecr is equal to.