Home
Class 12
MATHS
The length of the longer diagonal of the...

The length of the longer diagonal of the parallelogram constructed on ` 5veca + 2vecb and veca - 3vecb, ` if it is given that ` |veca|=2sqrt2, |vecb|=3 and veca. Vecb= pi/4` is

A

15

B

`sqrt3`

C

`sqrt593`

D

`sqrt369`

Text Solution

Verified by Experts

The correct Answer is:
C

The diagonals of the parallelogram are
` vecalpha = 5veca + 2vecb + veca -3vecb = 6veca - vecb and beta = +- ( 4 veca + 5vecb)`
Now,
` |vecalpha|= | 6 veca - vecb|`
` Rightarrow |vecalpha| = sqrt(36 |veca|^(2) + |vecb|^(2) -12 (veca .vecb))`
`|vecalpha|=sqrt(36xx8+9-12xx 2sqrt2xx3xx1/sqrt2) =15`
and,
` |vecbeta|=|4veca +5vecb|`
`|vecbeta|=sqrt(16|veca|^(2)+25|vecb|^(2)+40(veca.vecb))`
`|vecbeta|=sqrt(16xx8+25xx9 +40xx2sqrt2xx3xx1/sqrt2)=sqrt593`
Clearly, `|vecbeta| gt |vecalpha|`
Hence, the length of the longer diagonal is `sqrt593`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

Find |veca-vecb| , if two vectors veca and vecb are such that |veca| = 2,|vecb|=3 and veca.vecb = 4 .

Find |veca-vecb| , if two vector veca and vecb are such that |veca|=4,|vecb|=5 and veca.vecb=3

Let veca = 3hati + 2hatj and vecb = 2hati + 3hatj . Is |veca| = |vecb| ? Is veca = vecb ?

Find vecA*vecB if |vecA|= 2, |vecB|= 5, and |vecAxx vecB|=8

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

what is the angle between veca and vecb, if veca. vecb = 3 and | veca xx vecb| = 3 sqrt3.

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , " then " |3veca +2vecb|=

(vecA+2vecB).(2vecA-3vecB) :-