Home
Class 12
MATHS
For non zero vectors veca,vecb, vecc |...

For non zero vectors `veca,vecb, vecc`
`|(vecaxxvecb).vec|=|veca||vecb||vecc|` holds iff

A

`veca.vecb=vecb.vecc=veca.veca=0`

B

`veca.vecb=0=vecb.vecc`

C

`vecb.vecc=0=vecc.veca`

D

`vecc.veca=0=veca.vecb`

Text Solution

Verified by Experts

The correct Answer is:
A

NA
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

For non zero vectors veca,vecb,vecc|(vecaxxvecb).vecc|=|veca||vecb||vec| holds if and only if (A) veca.vecb=0,vecb.vecc=0 (B) vecb.vecc=0,vecc.veca=0 (C) vecc.veca=0,veca.vecb=0 (D) veca.vecb=vecb.vecc=vecc.veca=0

For three vectors veca, vecb and vecc , If |veca|=2, |vecb|=1, vecaxxvecb=vecc and vecbxxvecc=veca , then the value of [(veca+vecb,vecb+vecc,vecc+veca)] is equal to

Knowledge Check

  • For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc| holds if and only if

    A
    `veca.vecb=0 , vecb .vecc=0`
    B
    `vecb.vecc = 0, vecc, veca =0`
    C
    `vecc.veca =0, veca,vecb =0`
    D
    `veca.vecb= vecb.vecc= vecc.veca =0`
  • Statement 1: If V is the volume of a parallelopiped having three coterminous edges as veca, vecb , and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is V^(3) Statement 2: For any three vectors veca, vecb, vecc |(veca.veca, veca.vecb, veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|=[(veca,vecb, vecc)]^(3)

    A
    1
    B
    2
    C
    3
    D
    4
  • Let veca,vecb,vecc be three non-zero vectors such that [vecavecbvecc]=|veca||vecb||vecc| then

    A
    `veca.vecb=vecb.vecc`
    B
    `vecb.vecc=vecc.veca`
    C
    `vecc.veca=veca.vecb`
    D
    `vecaxx(vecbxxvecc)=(vecaxxvecb)xxvecc`
  • Similar Questions

    Explore conceptually related problems

    veca,vecb,vecc are non zero vectors. If vecaxxvecb=vecaxxvecc and veca.vecb=veca.vecc then show that vecb=vecc .

    veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

    If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

    For three non - zero vectors veca, vecb and vecc , if [(veca, vecb , vecc)]=4 , then [(vecaxx(vecb+2vecc), vecbxx(vecc-3veca), vecc xx(3veca+vecb))] is equal to

    Consider vecr , veca, vecb and vecc are non-zero vectors such that vecr . Veca = 0 |vecr xx vecb| then = |vecr | |vecb | |vecr xx vecc| = |vecr | |vecc | [ veca vecb vecc ] is equal to