Home
Class 12
MATHS
If theta in [(pi)/(2),3(pi)/(2)] then si...

If `theta in [(pi)/(2),3(pi)/(2)] then sin^(-1)(sin theta)` equals

A

`theta`

B

`pi - theta`

C

`2pi - theta`

D

`-pi + theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin^{-1}(\sin \theta) \) for \( \theta \) in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we can follow these steps: ### Step 1: Understand the Range of \( \sin^{-1} \) The function \( \sin^{-1}(x) \) (or arcsin) is defined for \( x \) in the range of \([-1, 1]\) and its output is restricted to the interval \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\). ### Step 2: Identify the Interval of \( \theta \) Given that \( \theta \) is in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we need to find a way to express \( \theta \) such that it falls within the range of \( \sin^{-1} \). ### Step 3: Adjust \( \theta \) to Fit the Range To bring \( \theta \) within the range of \( \sin^{-1} \), we can subtract \( \pi \) from \( \theta \): \[ \theta - \pi \] This transformation will shift \( \theta \) into the range of \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\). ### Step 4: Calculate the New Values Now, let's compute the new values: - For \( \theta = \frac{\pi}{2} \): \[ \frac{\pi}{2} - \pi = -\frac{\pi}{2} \] - For \( \theta = \frac{3\pi}{2} \): \[ \frac{3\pi}{2} - \pi = \frac{\pi}{2} \] Thus, \( \theta - \pi \) will range from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\). ### Step 5: Apply the Property of Inverse Functions Using the property of inverse functions: \[ \sin^{-1}(\sin x) = x \quad \text{if } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] we can write: \[ \sin^{-1}(\sin \theta) = \theta - \pi \] ### Step 6: Final Result Thus, the final answer is: \[ \sin^{-1}(\sin \theta) = \theta - \pi \] ### Conclusion Since we need to express the result in terms of \( \theta \), we can rewrite it as: \[ \sin^{-1}(\sin \theta) = \pi - \theta \]

To solve the problem \( \sin^{-1}(\sin \theta) \) for \( \theta \) in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we can follow these steps: ### Step 1: Understand the Range of \( \sin^{-1} \) The function \( \sin^{-1}(x) \) (or arcsin) is defined for \( x \) in the range of \([-1, 1]\) and its output is restricted to the interval \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\). ### Step 2: Identify the Interval of \( \theta \) Given that \( \theta \) is in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we need to find a way to express \( \theta \) such that it falls within the range of \( \sin^{-1} \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If (pi)/(2)

If int_(-3 pi)^(3 pi)sin^(2)theta sin^(2)(2 theta)d theta is equal to (k pi)/(4), then value of k is

Knowledge Check

  • If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

    A
    `tan theta sin theta`
    B
    `-tan theta sin theta`
    C
    `tan theta-sin theta`
    D
    `sin theta-tan theta`
  • For any theta epsilon((pi)/4,(pi)/2) the expression 3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4sin^(6)theta equals:

    A
    `13-4cos^(2)+6sin^(2) theta cos^(2)theta`
    B
    `13-4cos^(4) theta+2sin^(2) theta cos^(2) theta`
    C
    `13-4cos^(6)theta`
    D
    `13-4cos^(2) theta+6cos^(4) theta`
  • For any theta in (pi//4, pi//2) , the expression 3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4sin^(6)theta equals

    A
    `13-4cos^(6)theta`
    B
    `13-4cos^(4)theta+2sin^(2)theta cos^(2)theta`
    C
    `13-4cos^(2)theta+2sin^(2)thetacos^(2)theta`
    D
    `13-4cos^(2)theta+6sin^(2)theta cos^(2)theta`
  • Similar Questions

    Explore conceptually related problems

    If int_(-3 pi)^(3 pi)sin^(2)theta sin^(2)(2 theta)d theta is equal to (k pi)/(4), then value of k is

    If sin theta + 2 cos theta = 1, where 0 lt theta lt (pi)/(2), then what is 2 sin theta - cos theta equal to ?

    sqrt((1-sin theta)/(1+sin theta))={sec theta-tan theta, if -(pi)/(2)

    Assume int _(0) ^(pi) ln sin theta d theta =- pi ln 2 then prove that int _(0) ^(pi) theta ^(3) ln sin theta d theta =(3pi)/(2) int_(0) ^(pi) theta ^(2) ln ( sqrt2 sin theta) d theta.

    If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :