Home
Class 12
MATHS
If theta in [(pi)/(2),3(pi)/(2)] then si...

If `theta in [(pi)/(2),3(pi)/(2)] then sin^(-1)(sin theta)` equals

A

`theta`

B

`pi - theta`

C

`2pi - theta`

D

`-pi + theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin^{-1}(\sin \theta) \) for \( \theta \) in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we can follow these steps: ### Step 1: Understand the Range of \( \sin^{-1} \) The function \( \sin^{-1}(x) \) (or arcsin) is defined for \( x \) in the range of \([-1, 1]\) and its output is restricted to the interval \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\). ### Step 2: Identify the Interval of \( \theta \) Given that \( \theta \) is in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we need to find a way to express \( \theta \) such that it falls within the range of \( \sin^{-1} \). ### Step 3: Adjust \( \theta \) to Fit the Range To bring \( \theta \) within the range of \( \sin^{-1} \), we can subtract \( \pi \) from \( \theta \): \[ \theta - \pi \] This transformation will shift \( \theta \) into the range of \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\). ### Step 4: Calculate the New Values Now, let's compute the new values: - For \( \theta = \frac{\pi}{2} \): \[ \frac{\pi}{2} - \pi = -\frac{\pi}{2} \] - For \( \theta = \frac{3\pi}{2} \): \[ \frac{3\pi}{2} - \pi = \frac{\pi}{2} \] Thus, \( \theta - \pi \) will range from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\). ### Step 5: Apply the Property of Inverse Functions Using the property of inverse functions: \[ \sin^{-1}(\sin x) = x \quad \text{if } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] we can write: \[ \sin^{-1}(\sin \theta) = \theta - \pi \] ### Step 6: Final Result Thus, the final answer is: \[ \sin^{-1}(\sin \theta) = \theta - \pi \] ### Conclusion Since we need to express the result in terms of \( \theta \), we can rewrite it as: \[ \sin^{-1}(\sin \theta) = \pi - \theta \]

To solve the problem \( \sin^{-1}(\sin \theta) \) for \( \theta \) in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we can follow these steps: ### Step 1: Understand the Range of \( \sin^{-1} \) The function \( \sin^{-1}(x) \) (or arcsin) is defined for \( x \) in the range of \([-1, 1]\) and its output is restricted to the interval \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\). ### Step 2: Identify the Interval of \( \theta \) Given that \( \theta \) is in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we need to find a way to express \( \theta \) such that it falls within the range of \( \sin^{-1} \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

For any theta epsilon((pi)/4,(pi)/2) the expression 3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4sin^(6)theta equals:

If (pi)/(2)

If int_(-3 pi)^(3 pi)sin^(2)theta sin^(2)(2 theta)d theta is equal to (k pi)/(4), then value of k is

If int_(-3 pi)^(3 pi)sin^(2)theta sin^(2)(2 theta)d theta is equal to (k pi)/(4), then value of k is

If sin theta + 2 cos theta = 1, where 0 lt theta lt (pi)/(2), then what is 2 sin theta - cos theta equal to ?

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

sqrt((1-sin theta)/(1+sin theta))={sec theta-tan theta, if -(pi)/(2)

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Section I - Solved Mcqs
  1. If theta in [(pi)/(2),3(pi)/(2)] then sin^(-1)(sin theta) equals

    Text Solution

    |

  2. tan^(-1)(tansqrt(1-theta))=sqrt(1-theta) when

    Text Solution

    |

  3. A root of the equation17x^2 + 17x tan [2 tan^-1(1/5) - pi/4] - 10 = 0 ...

    Text Solution

    |

  4. The set of vlues of x for which tan^(-1)(x)/sqrt(1-x^(2))=sin^(-1) x...

    Text Solution

    |

  5. cos^(-1){1/2x^(2)+sqrt(1+x^(2))sqrt(1-x^(2))/(4)}=cos^(-1)(x/2)-cos^(-...

    Text Solution

    |

  6. If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

    Text Solution

    |

  7. cosec^(-1)(cosx) is defined if

    Text Solution

    |

  8. If 0< x< 1,then tan^(-1)(sqrt(1-x^2)/(1+x)) is equal to

    Text Solution

    |

  9. sin^(-1){sin(2x^(2)+4)/(x^(2)+1)=ltpi-3 if

    Text Solution

    |

  10. cos[tan^(-1){tan((15pi)/4)}]

    Text Solution

    |

  11. If Sigma(r=1)^(n) cos^(-1)x(r)=0, then Sigma(r=1)^(n) x(r) equals

    Text Solution

    |

  12. If Sigma(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma(r=1)^(2n) x(r )...

    Text Solution

    |

  13. If sin^(- 1)(x-(x^2)/2+(x^3)/4-.....)+cos^(- 1)(x^2-(x^4)/2+(x^6)/4-....

    Text Solution

    |

  14. If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0...

    Text Solution

    |

  15. if cos^-1 x > sin^-1 x, then x belongs to the interval

    Text Solution

    |

  16. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  17. If cot^(-1)(n/(pi))>(pi)/6, n in N, then the maximum value of n is :

    Text Solution

    |

  18. if 6sin^-1(x^2-6x+12)=2pi, then the value of x, is

    Text Solution

    |

  19. Which of the following is the solution set of the equation sin^-1 x = ...

    Text Solution

    |

  20. If log(2)xge0 then log(1//pi){sin^(-1)((2x)/(1+x^(2)))+2tan^(-1)x} is...

    Text Solution

    |