Home
Class 12
MATHS
If the matrices, A, B and (A+B) are non-...

If the matrices, A, B and `(A+B)` are non-singular, then prove that `[A(A+B)^(-1) B]^(-1) =B^(-1)+A^(-1)`.

Text Solution

AI Generated Solution

To prove that \([A(A+B)^{-1} B]^{-1} = B^{-1} + A^{-1}\), we will start by manipulating the left-hand side of the equation step by step. ### Step-by-Step Solution: 1. **Start with the left-hand side:** \[ LHS = [A(A+B)^{-1} B]^{-1} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If the matrices, A ,B ,(A+B) are non-singular, then prove that [A(A+B)^(-1)B]^(-1)=B^(-1)+A^(-1) .

Prove that: (a^(-1)+b^(-1))^(-1)=(a b)/(a+b)

Knowledge Check

  • If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1)=

    A
    A) `CBA^(-1)`
    B
    B) `C^(-1)B^(-1)A^(-1)`
    C
    C) `C^(-1)BA^(-1)`
    D
    D) `C^(-1)BA`
  • Similar Questions

    Explore conceptually related problems

    If A and B are two non-singular matrices which commute, then (A(A+B)^(-1)B)^(-1)(AB)=

    If A, B are two n xx n non-singular matrices, then (1) AB is non-singular (2) AB is singular (3) (AB)^(-1)=A^(-1) B^(-1) (4) (AB)^(-1) does not exist

    If B and C are non-singular matrices and O is null matrix, then show that [[A, B],[ C ,O]]^(-1)=[[O, C^(-1)],[B^(-1),-B^-1A C^(-1)]]dot

    If A and B are non-singular symmetric matrices such that AB=BA , then prove that A^(-1) B^(-1) is symmetric matrix.

    If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

    For non-singular square matrix A ,\ B\ a n d\ C of the same order then, (A B^(-1)C)^(-1)= (a) A^(-1)B C^(-1) (b) C^(-1)B^(-1)A^(-1) (c) C B A^(-1) (d) C^(-1)\ B\ A^(-1)

    If Aa n dB are square matrices of the same order and A is non-singular, then for a positive integer n ,(A^(-1)B A)^n is equal to A^(-n)B^n A^n b. A^n B^n A^(-n) c. A^(-1)B^n A^ d. n(A^(-1)B^A)^