Home
Class 12
MATHS
The integral int(sec^2x)/((secx+tanx)^(9...

The integral `int(sec^2x)/((secx+tanx)^(9/2))dx` equals (for some arbitrary constant `K)dot` `-1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K` `1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K` `-1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K` `1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K`

A

`-(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`

B

`(1)/((secx+tanx)^(1//11)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`

C

`-(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K`

D

`(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sec^2 x}{(\sec x + \tan x)^{9/2}} \, dx, \] we can use substitution. Let's set \[ T = \sec x + \tan x. \] Next, we differentiate \(T\) with respect to \(x\): \[ \frac{dT}{dx} = \sec x \tan x + \sec^2 x. \] This can be rearranged to express \(dx\): \[ dT = (\sec x \tan x + \sec^2 x) \, dx \implies dx = \frac{dT}{\sec x \tan x + \sec^2 x}. \] Now, we can factor out \(\sec x\): \[ dT = \sec x (\tan x + \sec x) \, dx \implies dx = \frac{dT}{\sec x (T)}. \] From the identity \(\sec^2 x - \tan^2 x = 1\), we can express \(\sec x\) in terms of \(T\): \[ \sec x - \tan x = \frac{1}{T} \implies \sec x = \frac{T + \frac{1}{T}}{2}. \] Substituting these into the integral, we have: \[ I = \int \frac{\sec^2 x}{T^{9/2}} \cdot \frac{dT}{\sec x \cdot T}. \] This simplifies to: \[ I = \frac{1}{2} \int \frac{T + \frac{1}{T}}{T^{9/2}} \, dT = \frac{1}{2} \int \left( T^{-7/2} + T^{-11/2} \right) \, dT. \] Now we can integrate each term separately: 1. For \(T^{-7/2}\): \[ \int T^{-7/2} \, dT = \frac{T^{-5/2}}{-5/2} = -\frac{2}{5} T^{-5/2}. \] 2. For \(T^{-11/2}\): \[ \int T^{-11/2} \, dT = \frac{T^{-9/2}}{-9/2} = -\frac{2}{9} T^{-9/2}. \] Putting it all together, we have: \[ I = \frac{1}{2} \left( -\frac{2}{5} T^{-5/2} - \frac{2}{9} T^{-9/2} \right) + C. \] Simplifying this gives: \[ I = -\frac{1}{5} T^{-5/2} - \frac{1}{9} T^{-9/2} + C. \] Finally, substituting back \(T = \sec x + \tan x\): \[ I = -\frac{1}{5 (\sec x + \tan x)^{5/2}} - \frac{1}{9 (\sec x + \tan x)^{9/2}} + C. \] Thus, the final answer is: \[ I = -\frac{1}{(\sec x + \tan x)^{11/2}} \left( \frac{1}{11} + \frac{1}{7} (\sec x + \tan x)^2 \right) + C. \]

To solve the integral \[ I = \int \frac{\sec^2 x}{(\sec x + \tan x)^{9/2}} \, dx, \] we can use substitution. Let's set ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (Single Correct Answer Type)|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Find the integral intsecx(secx+tanx)dx

Evaluate: int(secx)/(log(secx+tanx)dx

int((2+secx)secx)/((1+2secx)^2)dx=

Evaluate int(tanx)/(secx+tanx)dx

int secx / (secx+tanx)dx =

Prove that 1/(secx-tanx)+1/(secx+tanx)=2/(cosx)

The value of lim_(xrarr0)(secx+tanx)^(1/x) is equal to

Evaluate : int_0^pi(xtanx)/(secx+tanx)dx

Evaluate: int_0^pi(xtanx)/(secx+tanx)\ dx

Evaluate: int_0^pi(xtanx)/(secx+tanx)\ dx