Home
Class 12
MATHS
"If " int(5tanx)/(tanx-2)dx=x+a " In"(si...

`"If " int(5tanx)/(tanx-2)dx=x+a " In"(sinx-2cosx)+k " then " a= `

A

-1

B

-2

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{5 \tan x}{\tan x - 2} \, dx = x + a \ln(\sin x - 2 \cos x) + k\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{5 \tan x}{\tan x - 2} \, dx \] We can express \(\tan x\) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we rewrite the integral as: \[ I = \int \frac{5 \frac{\sin x}{\cos x}}{\frac{\sin x}{\cos x} - 2} \, dx \] ### Step 2: Simplify the Integral Now, we simplify the expression: \[ I = \int \frac{5 \sin x}{\sin x - 2 \cos x} \, dx \] Next, we can factor out \(\cos x\) from the denominator: \[ I = \int \frac{5 \sin x}{\sin x - 2 \cos x} \, dx \] ### Step 3: Separate Terms We can separate the terms in the numerator: \[ 5 \sin x = (\sin x - 2 \cos x) + 2 \sin x + 2 \cos x \] Thus, we rewrite the integral: \[ I = \int \left(1 + \frac{2 \sin x + 2 \cos x}{\sin x - 2 \cos x}\right) \, dx \] ### Step 4: Split the Integral Now we can split the integral into two parts: \[ I = \int 1 \, dx + 2 \int \frac{\sin x + \cos x}{\sin x - 2 \cos x} \, dx \] The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 5: Substitution for the Second Integral For the second integral, we can use the substitution: Let \(t = \sin x - 2 \cos x\). Then, the derivative \(dt\) is: \[ dt = (\cos x + 2 \sin x) \, dx \] Thus, we can express \(dx\) in terms of \(dt\): \[ dx = \frac{dt}{\cos x + 2 \sin x} \] ### Step 6: Solve the Second Integral Now we rewrite the second integral: \[ 2 \int \frac{\sin x + \cos x}{t} \cdot \frac{dt}{\cos x + 2 \sin x} \] This simplifies to: \[ 2 \int \frac{1}{t} \, dt = 2 \ln |t| + C = 2 \ln |\sin x - 2 \cos x| + C \] ### Step 7: Combine Results Combining the results, we have: \[ I = x + 2 \ln |\sin x - 2 \cos x| + C \] Comparing this with the given expression \(x + a \ln(\sin x - 2 \cos x) + k\), we find: \[ a = 2 \] ### Final Answer Thus, the value of \(a\) is: \[ \boxed{2} \]

To solve the integral \(\int \frac{5 \tan x}{\tan x - 2} \, dx = x + a \ln(\sin x - 2 \cos x) + k\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{5 \tan x}{\tan x - 2} \, dx \] We can express \(\tan x\) in terms of sine and cosine: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If the integral int(5tanx)/(tanx-2)dx=x+a"ln"|sinx-2cosx|+k then a is equal to (1) -1 (2) -2 (3) 1 (4) 2

int_0^pi tanx/(sinx+tanx)dx

Evaluate int(tanx)/(secx+tanx)dx

Evaluate: int(1-tanx)/(1+tanx)dx

Evaluate: int(1+tanx)/(1-tanx)dx

Evaluate: int(tanx)/(a+btan^2x)dx

If int(sinx+3cosx)/(sinx+cosx)dx=(kx)/(2)+ln(sinx+cosx) , then k is_________.

intsec^2x/((2+tanx)(3+tanx))dx

Evaluate: int(2tanx+3)/(3tanx+4)dx

Evaluate: int(2tanx+3)/(3tanx+4)dx