Home
Class 12
MATHS
Evaluate: int((x-1)^2)/(x^4+x^2+1)\ dx...

Evaluate: `int((x-1)^2)/(x^4+x^2+1)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{(x-1)^2}{x^4 + x^2 + 1} \, dx, \] we will follow these steps: ### Step 1: Expand the numerator First, we expand the numerator \((x-1)^2\): \[ (x-1)^2 = x^2 - 2x + 1. \] Thus, we can rewrite the integral as: \[ I = \int \frac{x^2 - 2x + 1}{x^4 + x^2 + 1} \, dx. \] ### Step 2: Split the integral We can split the integral into three separate integrals: \[ I = \int \frac{x^2}{x^4 + x^2 + 1} \, dx - 2 \int \frac{x}{x^4 + x^2 + 1} \, dx + \int \frac{1}{x^4 + x^2 + 1} \, dx. \] ### Step 3: Simplify the first integral For the first integral, we can factor out \(x^2\) from the denominator: \[ \int \frac{x^2}{x^4 + x^2 + 1} \, dx = \int \frac{1}{x^2 + 1 + \frac{1}{x^2}} \, dx. \] ### Step 4: Rewrite the denominator We can rewrite the denominator \(x^4 + x^2 + 1\) as follows: \[ x^4 + x^2 + 1 = (x^2)^2 + (x^2) + 1 = (x^2 + \frac{1}{2})^2 + \frac{3}{4}. \] ### Step 5: Substitute for the second integral For the second integral, we can use substitution. Let \(u = x^2\), then \(du = 2x \, dx\) or \(dx = \frac{du}{2\sqrt{u}}\). This gives us: \[ -2 \int \frac{x}{x^4 + x^2 + 1} \, dx = -\int \frac{du}{u^2 + u + 1}. \] ### Step 6: Evaluate the third integral The third integral can be evaluated using a similar approach. We can use the formula for the integral of the form \(\int \frac{1}{a^2 + x^2} \, dx\). ### Step 7: Combine results After evaluating each integral, we combine the results to get the final answer. ### Final Result The final result of the integral is: \[ I = \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{x^2 - 1}{\sqrt{3}x}\right) - \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2x^2 + 1}{\sqrt{3}}\right) + C. \]

To evaluate the integral \[ I = \int \frac{(x-1)^2}{x^4 + x^2 + 1} \, dx, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int((x^2-1))/(x^4+x^2+1)\ dx

Evaluate: int((x^2-1))/(x^4+x^2+1)\ dx

Evaluate: int(x^2-3x+1)/(x^4+x^2+1)\ dx

Evaluate: int(x^2-1)/(x^4+x^2+1)\ dx

Evaluate: int(x^2-1)/(x^4+x^2+1)\ dx

Evaluate: int(x^2+1)/(x^4-x^2+1)\ dx

Evaluate: int(x^2+1)/(x^4-x^2+1)\ dx

Evaluate: int(x^2+1)/(x^4+1)dx

Evaluate: int(x^2+1)/(x^4+1)dx

Evaluate: int(x^2-1)/(x^2+4)dx