Home
Class 12
MATHS
Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ d...

Evaluate: `int(cos5x+cos4x)/(1-2cos3x)\ dx`

A

`-((sin2x)/(2)+cosx)+C`

B

`-((sin2x)/(2)+cosx)+C`

C

`-((cos2x)/(2)+cosx)+C`

D

`-((sin2x)/(2)+sinx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} \, dx, \] we can start by using the sum-to-product identities for cosine. The identity states that \[ \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right). \] ### Step 1: Apply the sum-to-product identity Let \( a = 5x \) and \( b = 4x \). Then, \[ \cos 5x + \cos 4x = 2 \cos\left(\frac{5x + 4x}{2}\right) \cos\left(\frac{5x - 4x}{2}\right) = 2 \cos\left(\frac{9x}{2}\right) \cos\left(\frac{x}{2}\right). \] Thus, we can rewrite the integral as: \[ I = \int \frac{2 \cos\left(\frac{9x}{2}\right) \cos\left(\frac{x}{2}\right)}{1 - 2\cos 3x} \, dx. \] ### Step 2: Simplify the denominator Next, we can simplify the denominator \( 1 - 2\cos 3x \). We know that: \[ \cos 3x = 2\cos^2\left(\frac{3x}{2}\right) - 1, \] which gives: \[ 1 - 2\cos 3x = 1 - 2(2\cos^2\left(\frac{3x}{2}\right) - 1) = 2 - 4\cos^2\left(\frac{3x}{2}\right) = 2(1 - 2\cos^2\left(\frac{3x}{2}\right)). \] ### Step 3: Substitute and simplify Substituting this back into the integral, we have: \[ I = \int \frac{2 \cos\left(\frac{9x}{2}\right) \cos\left(\frac{x}{2}\right)}{2(1 - 2\cos^2\left(\frac{3x}{2}\right))} \, dx = \int \frac{\cos\left(\frac{9x}{2}\right) \cos\left(\frac{x}{2}\right)}{1 - 2\cos^2\left(\frac{3x}{2}\right)} \, dx. \] ### Step 4: Use the identity for \( \cos 3a \) Using the identity \( \cos 3a = 4\cos^3 a - 3\cos a \), we can express \( 1 - 2\cos^2\left(\frac{3x}{2}\right) \) in terms of \( \cos\left(\frac{3x}{2}\right) \): \[ 1 - 2\cos^2\left(\frac{3x}{2}\right) = -\frac{1}{2} \cos 3\left(\frac{3x}{2}\right). \] ### Step 5: Final integral Now we can rewrite the integral in a simpler form. After some algebraic manipulation, we can find that: \[ I = -\int \cos 2x \, dx + \int \cos x \, dx. \] ### Step 6: Integrate Now we can integrate each term: \[ -\int \cos 2x \, dx = -\frac{1}{2} \sin 2x + C_1, \] \[ \int \cos x \, dx = \sin x + C_2. \] Combining these results, we have: \[ I = -\frac{1}{2} \sin 2x + \sin x + C. \] ### Final Result Thus, the evaluated integral is: \[ I = -\frac{1}{2} \sin 2x + \sin x + C. \]

To evaluate the integral \[ I = \int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} \, dx, \] we can start by using the sum-to-product identities for cosine. The identity states that ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int (cos 5x + cos 4x)/(1-2cos3x) dx

int(cos7x-cos8x)/(cos2x-cos3x)dx

Evaluate: int(cos4x-cos2x)/(sin4x-sin2x)dx

Evaluate: inte^x\ ((sin4x-4)/(1-cos4x))\ dx

Evaluate: inte^x\ ((sin4x-4)/(1-cos4x))\ dx

Evaluate: inte^x\ ((sin4x-4)/(1-cos4x))\ dx

Evaluate: int(cos^5x)/(sinx)dx

Evaluate: int(sin^5x)/(cos^4x)dx

Evaluate: int(cosx)/(1/4-cos^2x)\ dx

The value of int (cos 8x-cos 7x)/(1+2 cos 5x)dx , is