Home
Class 12
MATHS
Let f(x) = 1 + |x|,x < -1 [x], x >= -1, ...

Let `f(x) = 1 + |x|,x < -1 [x], x >= -1, where [*]` denotes the greatest integer function.Then `f { f (- 2.3)}` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} 1 + |x| & \text{if } x < -1 \\ [x] & \text{if } x \geq -1 \end{cases} \] We need to find \( f(f(-2.3)) \). ### Step 1: Calculate \( f(-2.3) \) Since \(-2.3 < -1\), we use the first case of the function: \[ f(-2.3) = 1 + |-2.3| \] Calculating the absolute value: \[ |-2.3| = 2.3 \] Now substituting back into the function: \[ f(-2.3) = 1 + 2.3 = 3.3 \] ### Step 2: Calculate \( f(f(-2.3)) = f(3.3) \) Now we need to evaluate \( f(3.3) \). Since \( 3.3 \geq -1\), we use the second case of the function: \[ f(3.3) = [3.3] \] The greatest integer function \( [3.3] \) gives us the largest integer less than or equal to \( 3.3 \): \[ [3.3] = 3 \] ### Final Result Thus, we have: \[ f(f(-2.3)) = f(3.3) = 3 \] The final answer is: \[ \boxed{3} \]

To solve the problem, we need to evaluate the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} 1 + |x| & \text{if } x < -1 \\ [x] & \text{if } x \geq -1 \end{cases} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.13|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.14|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.11|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is