Home
Class 12
MATHS
The inverse of the function f(x)=(e^x-e^...

The inverse of the function `f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2` is given by

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 2 \), we will follow these steps: ### Step 1: Set up the equation Let \( y = f(x) \). Thus, we have: \[ y = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 2 \] ### Step 2: Isolate the fraction Subtract 2 from both sides: \[ y - 2 = \frac{e^x - e^{-x}}{e^x + e^{-x}} \] ### Step 3: Simplify the fraction We can rewrite the left side: \[ y - 2 = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{(e^x - e^{-x})}{(e^x + e^{-x})} \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ (y - 2)(e^x + e^{-x}) = e^x - e^{-x} \] ### Step 5: Expand and rearrange Expanding the left side: \[ (y - 2)e^x + (y - 2)e^{-x} = e^x - e^{-x} \] Rearranging gives: \[ (y - 2)e^x - e^x = - (y - 2)e^{-x} - e^{-x} \] This simplifies to: \[ (y - 3)e^x = -(y - 2)e^{-x} \] ### Step 6: Multiply both sides by \( e^x \) Multiplying both sides by \( e^x \) gives: \[ (y - 3)e^{2x} = -(y - 2) \] ### Step 7: Solve for \( e^{2x} \) Rearranging gives: \[ e^{2x} = -\frac{(y - 2)}{(y - 3)} \] ### Step 8: Take the natural logarithm Taking the natural logarithm of both sides: \[ 2x = \ln\left(-\frac{(y - 2)}{(y - 3)}\right) \] ### Step 9: Solve for \( x \) Dividing by 2 gives: \[ x = \frac{1}{2} \ln\left(-\frac{(y - 2)}{(y - 3)}\right) \] ### Step 10: Write the inverse function Thus, the inverse function is: \[ f^{-1}(y) = \frac{1}{2} \ln\left(-\frac{(y - 2)}{(y - 3)}\right) \] ### Final Answer The inverse of the function is: \[ f^{-1}(x) = \frac{1}{2} \ln\left(-\frac{(x - 2)}{(x - 3)}\right) \]

To find the inverse of the function \( f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 2 \), we will follow these steps: ### Step 1: Set up the equation Let \( y = f(x) \). Thus, we have: \[ y = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 2 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.14|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.12|9 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

The function f(x) =e^(|x|) is

Knowledge Check

  • The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)) is

    A
    `(1)/(2)log""(1+x)/(1-x)`
    B
    `(1)/(2)log""(2+x)/(2-x)`
    C
    `(1)/(2)log""(1-x)/(1+x)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

    Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

    The function f(x) = e^(|x|) is

    The function f(x) = e^(|x|) is

    f(x)=e^x-e^(-x) then find f'(x)

    Integrate the functions (e^x)/((1+e^x)(2+e^x)

    Find the range of following functions: y=(e^(x)-e^(-x))/(e^(x)+e^(-x)),xge0