Home
Class 12
MATHS
Let f be a real-valued invertible functi...

Let `f` be a real-valued invertible function such that `f((2x-3)/(x-2))=5x-2, x!=2.` Then value of `f^(-1)(13)` is________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f^{-1}(13) \) given the function \( f\left(\frac{2x-3}{x-2}\right) = 5x - 2 \). ### Step-by-Step Solution: 1. **Understand the Given Function**: We have the function defined as: \[ f\left(\frac{2x-3}{x-2}\right) = 5x - 2 \] Our goal is to find \( f^{-1}(13) \). 2. **Set Up the Equation**: To find \( f^{-1}(13) \), we need to find \( x \) such that: \[ f(x) = 13 \] From the given function, we can set: \[ 5x - 2 = 13 \] 3. **Solve for \( x \)**: Rearranging the equation: \[ 5x - 2 = 13 \implies 5x = 13 + 2 \implies 5x = 15 \implies x = \frac{15}{5} = 3 \] 4. **Find \( f^{-1}(13) \)**: Now that we have \( x = 3 \), we can substitute this back into the expression we derived from the function: \[ f^{-1}(13) = \frac{2(3) - 3}{3 - 2} = \frac{6 - 3}{1} = \frac{3}{1} = 3 \] 5. **Conclusion**: Therefore, the value of \( f^{-1}(13) \) is: \[ \boxed{3} \]

To solve the problem, we need to find the value of \( f^{-1}(13) \) given the function \( f\left(\frac{2x-3}{x-2}\right) = 5x - 2 \). ### Step-by-Step Solution: 1. **Understand the Given Function**: We have the function defined as: \[ f\left(\frac{2x-3}{x-2}\right) = 5x - 2 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(single correct Answer Type)|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Multiple Correct Answer Type)|2 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f be a real valued function such that f(x)+3xf(1/x)=2(x+1) for all real x > 0. The value of f(5) is

Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then find f(x)dot

Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then find f(x)dot

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

Let f be a real-valued function defined by f(x) = 3x^(2) + 2x + 5 Find f'(1).

Let y=f(x) be a real valued function satisfying xdy/dx = x^2 + y-2 , f(1)=1 then f(3) equal

Let f be a function satisfying the functional rule 2f(x)+f(1-x)=xAAx in Rdot Then the value of f(1)+f(2)+f(3) is

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :