Home
Class 12
MATHS
Let theta = tan^(-1) ( tan . (5pi)/4) " ...

Let `theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan . (2pi)/3) `then

A

`theta gt phi`

B

`4 theta - 3 phi = 0`

C

`theta + phi = (7pi)/12`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expressions for \( \theta \) and \( \phi \) and then analyze their relationships. ### Step 1: Evaluate \( \theta \) Given: \[ \theta = \tan^{-1}(\tan(5\pi/4)) \] We know that: \[ \tan(5\pi/4) = \tan(\pi + \pi/4) = \tan(\pi/4) = 1 \] Thus: \[ \theta = \tan^{-1}(1) \] Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we have: \[ \theta = \frac{\pi}{4} \] ### Step 2: Evaluate \( \phi \) Given: \[ \phi = \tan^{-1}(-\tan(2\pi/3)) \] We can rewrite \( 2\pi/3 \) as: \[ 2\pi/3 = \pi - \pi/3 \] Thus: \[ \tan(2\pi/3) = -\tan(\pi/3) = -\sqrt{3} \] So: \[ \phi = \tan^{-1}(-(-\sqrt{3})) = \tan^{-1}(\sqrt{3}) \] Since \( \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \), we have: \[ \phi = \frac{\pi}{3} \] ### Step 3: Analyze the relationship between \( \theta \) and \( \phi \) Now we have: \[ \theta = \frac{\pi}{4} \quad \text{and} \quad \phi = \frac{\pi}{3} \] ### Step 4: Check the equation \( 4\theta = 3\phi \) Calculating \( 4\theta \): \[ 4\theta = 4 \times \frac{\pi}{4} = \pi \] Calculating \( 3\phi \): \[ 3\phi = 3 \times \frac{\pi}{3} = \pi \] Since \( 4\theta = 3\phi \), we can conclude: \[ 4\theta - 3\phi = 0 \] ### Final Result The relationship between \( \theta \) and \( \phi \) is established, and we have: \[ 4\theta = 3\phi \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|67 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

cos[tan^(-1){tan((15pi)/4)}]

Solve: tan ^ (-1)tan((2pi)/3))

Find the value of tan^(-1)(tan((3pi)/4))

Find the value of tan^(-1)(tan((3pi)/4))

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

If X is A.M. of tan(pi/9) and tan ((5pi)/18) and y is A.M. of tan(pi/9) and tan((7pi)/18) , then