Home
Class 12
MATHS
If sqrt(1-x^2) + sqrt(1-y^2) = a(x-y), s...

If `sqrt(1-x^2) + sqrt(1-y^2) = a(x-y), show dy/dx = sqrt((1-y^2)/(1-x^2))`

Text Solution

Verified by Experts

`sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y)" … (1)"`
Put `x=sintheta, y=sinphi`
`therefore theta =sin^(-1)x,phi=sin^(-1)y`
`therefore` (1) becomes, `sqrt(1-sin^(2)theta)+sqrt(1-sin^(2)phi)=a(sintheta-sinphi)`
`therefore cos theta+cosphi=a(sintheta-sinphi)`
`therefore 2cos((theta+phi)/(2)).cos((theta-phi)/(2))=axx2cos((theta+phi)/(2)).sin.((theta-phi)/(2))`
`thereforecos((theta-phi)/(2))=asin((theta-phi)/(2))`
`therefore (cos((theta-phi)/(2)))/(sin((theta-phi)/(2)))=a`
`therefore cot((theta-phi)/(2))=a`
`therefore(theta-phi)/(2)=cot^(-1)a`
`therefore theta-phi=2cot^(-1)a`
`therefore sin^(-1)x-sin^(-1)y=2cot^(-1)a`
Differentiating both sides w.r.t. x, we get,
`(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-y^(2))).(dy)/(dx)=0`
`therefore (1)/(sqrt(1-y^(2)))(dy)/(dx)=(1)/(sqrt(1-x^(2)))`
`therefore (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 16 Solved Examples|1 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 17 Solved Examples|1 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 14 Solved Examples|1 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

Knowledge Check

  • If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

    A
    `sqrt((1-x^(2))(1-y^(2)))`
    B
    `sqrt((1-y^(2))/(1-x^(2)))`
    C
    `sqrt((1-x^(2))/(1-y^(2)))`
    D
    none of these
  • If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) is equal to

    A
    `sqrt((1-x^(2))/(1-y^(2)))`
    B
    `sqrt((1-y^(2))/(1-x^(2)))`
    C
    `sqrt((x^(2)-1)/(1-y^(2)))`
    D
    `sqrt((y^(2)-1)/(1-x^(2)))`
  • if sqrt""(1-x^2)+sqrt""(1-y^2)=alpha (x-y) , then (dy)/(dx)=

    A
    `sqrt(((1-y^2)/(1-x^2))`
    B
    `sqrt(((1-x^2)/(1-y^2))`
    C
    `sqrt((1-x^2)(1-y^2))`
    D
    None
  • Similar Questions

    Explore conceptually related problems

    sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

    If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

    ysqrt(1-x^(2))+xsqrt(1-y^(2))=1,"show that "(dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

    If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

    If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1. Prove that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))