Home
Class 12
MATHS
If x^(y)=e^(x-y), prove that (dy)/(dx)=(...

If `x^(y)=e^(x-y)`, prove that `(dy)/(dx)=(logx)/((1+logx)^(2)).`

Text Solution

Verified by Experts

`x^(y)=e^(x-y) therefore logx^(y)=loge^(x-y)`
`therefore ylogx=(x-y)loge`
`therefore ylogx=x-y" "...[becauseloge=1]`
`therefore y+ylogx=x thereforey(1+logx)=x`
`thereforey=(x)/(1+logx)`
Differentiating both sides w.r.t. x, we get,
`(dy)/(dx)=((1+logx).(d)/(dx)(x)-x.(d)/(dx)(1+logx))/((1+logx)^(2))`
`=((1+logx)(1)-x((1)/(x)))/((1+logx)^(2))=(logx)/((1+logx)^(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 17 Solved Examples|1 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 18 Solved Examples|1 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 15 Solved Examples|1 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

y=x^(logx)+(logx)^(x)

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

x(dy)/(dx)=y(logy-logx+1)

Solve x(dy)/(dx)=y(logy-logx+1)

If (x^(x)+y^(x))=1," show that "(dy)/(dx)=-{(x^(x)(1+logx)+y^(x)(logy))/(xy^(x-1))}

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).