• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
  • NEW
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Exponential Functions

Exponential Functions 

Exponential Functions Definition

An exponential function is a mathematical function in the form:

f(x)=a⋅bx 

where:

  • a ≠ 0 (initial value),
  • b > 0 and b ≠ 1 (base of the exponential),
  • x is the exponent (independent variable).

The most common base in calculus is the constant e≈2.718, leading to the natural exponential function:

f(x)=ex

1.0What is the Exponential Function?

In simpler terms, an exponential function grows (or decays) rapidly because the variable is in the exponent. These functions model population growth, radioactive decay, compound interest, and many natural processes. 

2.0Exponential Function Formulas

1. Basic Exponential Function

f(x)=a⋅bx

2. Natural Exponential Function

f(x)=ex

3. Compound Interest Formula (Exponential Growth)

A=P(1+nr​)nt

4. Continuous Growth/Decay

A=Pert

3.0Graphing Exponential Functions

Characteristics of the exponential functions graph:

  • Always passes through the point (0, a)
  • Rapid growth for b > 1
  • Decay for 0 < b < 1
  • Never touches the x-axis — horizontal asymptote at y = 0
  • Always positive for real values of x

Example:

Graph of f(x)=2x

  • Increases as x increases
  • Horizontal asymptote at  y = 0

Graphoff(x)=(1/2)x

  • Decreases as x increases (exponential decay)

4.0Exponential Functions Asymptotes

The horizontal asymptote of an exponential function is typically:

y = 0 

Unless the function is transformed, e.g. f(x)=2x+3, then the asymptote is y = 3.

5.0How to Calculate Exponential?

To calculate exponential values:

  • Use calculators or logarithm tables
  • For ex, scientific calculators have a dedicated EXP or ex button
  • For base b, use:

bx=exlnb 

6.0Exponential Properties

The following laws govern exponential expressions:

  1. bx⋅by=bx+y
  2. bybx​=bx−y
  3. (bx)y=bxy
  4. b−x=bx1​
  5. b0=1

These exponential properties simplify calculations and algebraic expressions.

7.0Logarithmic and Exponential Functions

Logarithmic functions are inverses of exponential functions.

If:

y=bx⇒logb​(y)=x

This connection is crucial for solving exponential equations:

2x=8⇒x=log2​(8)=3

8.0Exponential Functions Examples

Example 1:Evaluate f(x)=2xatx=3

Solution: 

f(3)=23=8

Example 2: Find the value of e2 (rounded)

Solution: 

e2≈7.389

Example 3: If a population doubles every 3 years, starting at 500, find the population after 9 years.

Solution: 

P=500⋅29/3=500⋅23=500⋅8=4000 

Example 4: Solve: e2x−5ex+6=0

Solution:
Let t=ex, then t > 0:

t2−5t+6=0(t−2)(t−3)=0⇒t=2 or 3

Back-substitute:

​ex=2⇒x=ln2ex=3⇒x=ln3​

Answer: x = ln 2, ln 3

Example 5: Evaluate: limx→0​xe2x−1​

Solution:
Using limit property:

​x→0lim​xekx−1​=k Thus, x→0lim​xe2x−1​=2​

Answer: 2

Example 6: Evaluate: ∫01​e−x2dx

Solution:
This is a Gaussian integral, no elementary form exists.

Approximation or error function:

∫01​e−x2dx≈0.7468 (from standard tables) 

Answer: Approximate value ≈ 0.7468 

Example 7: Find: dxd​(esinx)

Solution:
Chain rule:

esinx⋅cosx

Answer: esinx⋅cosx

Example 8: Solve: ln(ex−2)=1 

Solution:
Take exponential on both sides:

​ex−2=e1⇒ex=e+2⇒x=ln(e+2)​

Answer: x=ln(e+2)

Example 9: Find domain: f(x)=ex−4​ 

Solution:

​ex−4≥0⇒ex≥4⇒x≥ln4​

Answer: x≥ln4

Example 10: Solve: dxdy​=y⋅ex 

Solution:
Separate variables:

​ydy​=exdx⇒lny=ex+C⇒y=Aeex​

Answer: y=Aeex, where A is constant.

9.0Exponential Functions Differentiation

Let’s find the derivative of f(x)=a⋅ebx

Derivative:

dxd​(a⋅ebx)=a⋅b⋅ebx

Example:

f(x)=3e2x⇒f′(x)=6e2x

For f(x)=b^x, use:

​​dxd​(bx)=bxlnb 

4. What is the exponential function?

Ans: It’s a function where the variable is in the exponent, usually of the form f(x)=a⋅bx, used to model growth and decay.

5. How do you calculate exponential values?

Ans: Use formulas or a calculator. Use ex for natural exponentials or convert using bx=exlnb .

10.0Practice Questions on Exponential Functions

  1. Differentiate: f(x)=5e3x
  2. Evaluate: 34
  3. Solve for x: 2x=16
  4. Find the horizontal asymptote of ​​f(x)=2x−4
  5. If A=1000 e0.05t, find A when t = 10

Table of Contents


  • 1.0What is the Exponential Function?
  • 2.0Exponential Function Formulas
  • 3.0Graphing Exponential Functions
  • 4.0Exponential Functions Asymptotes
  • 5.0How to Calculate Exponential?
  • 6.0Exponential Properties
  • 7.0Logarithmic and Exponential Functions
  • 8.0Exponential Functions Examples
  • 9.0Exponential Functions Differentiation
  • 10.0Practice Questions on Exponential Functions

Frequently Asked Questions

They include multiplication and division laws, negative and zero exponent rules.

It rises or falls rapidly, has a horizontal asymptote, and never touches the x-axis.

They are inverses. Logarithms "undo" exponentials.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor
    • NEET 2025 Counselling

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO