• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE MAIN 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • ALLEN e-Store
    • AOSAT
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
NCERT Solutions
Class 8
Maths
Chapter 12 Factorisation

NCERT Solutions Class 8 Maths Chapter 12 Factorisation

Chapter 12 of Class 8 Maths, Factorization, deals with the factorization of algebraic expressions. The NCERT solutions for Class 8 Maths Chapter 12 Factorization are designed as per the textbook to gain a comprehensive knowledge of the entire syllabus. The simple format of these solutions will allow students to read and explore more about the topic.

This chapter presents several methods and their applications for factoring algebraic expressions. Allen’s NCERT solutions enable students to understand without much hassle how to break expressions into factors and thereby solve complex problems more efficiently.

1.0Class 8 Maths NCERT Solutions Chapter 12 PDF - Free Download

ALLEN offers detailed and step-by-step explanations of all the problems covered in the NCERT textbook class 8 Maths, helping students understand the concepts easily. This chapter includes the laws of exponents, expressing large numbers in standard form, and making easy calculations with exponents. Students can download the solutions from the link given below.

NCERT Solutions Class 8 Maths Chapter 12 - Factorisation

2.0Key Features of NCERT Solutions for Class 8 Maths - Factorisation

  • Step-by-Step Explanations: Each solution is meticulously crafted with detailed steps to ensure that students easily grasp the core concepts.
  • Enhanced Problem-Solving Skills: A variety of exercises are designed to strengthen analytical thinking and boost confidence.
  • Strong Foundation for Competitive Exams: These solutions provide comprehensive support for school exams and lay a strong foundation for competitive tests.

By practising the problems in these NCERT solutions, students can discover interesting ways to approach factorization, developing a thorough understanding of the topic.

3.0NCERT Questions with Solutions for Class 8 Maths Chapter 12 - Detailed Solutions

Exercise: 12.1

  • Find the common factors of the given terms : (i) 12x,36 (ii) 2y,22xy (iii) 14pq,28p2q2 (iv) 2x,3x2,4 (v) 6abc,24ab2,12a2b (vi) 16x3,−4x2,32x (vii)10pq, 20qr, 30 rp (viii) 3x2y3,10x3y2,6x2y2z Sol. (i) The numerical coefficients in the given monomials are 12 and 36 . The highest common factor of 12 and 36 is 12 . But there is no common literal appearing in the given monomials 12 x and 36. ∴ The highest common factor =12 (ii) 2y=2×y 22xy=2×11×x×y The common factors are 2,y. And, 2×y=2y (iii) The numerical coefficients of the given monomials are 14 and 28. The highest common factor of 14 and 28 is 14 . The common literals appearing in the given monomials are p and q. The smallest power of p and q in the two monomials = 1 The monomial of common literals with smallest powers =pq ∴ The highest common factor =14pq (iv) 2x=2×x 3x2=3×x×x 4=2×2 The common factor is 1 . (v) The numerical coefficients of the given monomials are 6, 24 and 12. The common literals appearing in the three monomials are a and b . The smallest power of a in the three monomials =1 The smallest power of b in the three monomials =1 The monomial of common literals with smallest powers =ab Hence, the highest common factor =6ab (vi) 16x3=2×2×2×2×x×x×x −4x2=−1×2×2×x×x 32x=2×2×2×2×2×x The common factors are 2,2,x. And 2×2×x=4x (vii) The numerical coefficients of the given monomials are 10,20 and 30. The highest common factor of 10,20 and 30 is 10 . There is no common literal appearing in the three monomials. Hence, the highest common factor =10 (viii) 3x2y3=3×x×x×y×y×y 10x3y2=2×5×x×x×x×y×y 6x2y2z=2×3×x×x×y×y×z The common factors are x,x,y,y. and, x×x×y×y=x2y2
  • Factorise the following expressions (i) 7x−42 (ii) 6p−12q (iii) 7a2+14a (iv) −16z+20z3 (v) 20ℓ2 m+30aℓm (vi) 5x2y−15xy2 (vii) 10a2−15b2+20c2 (viii) −4a2+4ab−4ca (ix) x2yz+xy2z+xyz2 (x) ax2y+bxy2+cxyz Sol. (i) We have, 7x=7×x and 42=2×3×7 The two terms have 7 as a common factor 7x−42=(7×x)−2×3×7 =7×(x−2×3)=7(x−6) (ii) 6p=2×3×p 12q=2×2×3×q The common factors are 2 and 3 . ∴6p−12q=(2×3×p)−(2×2×3×q) =2×3[p−(2×q)] =6(p−2q) (iii) We have, 7a2=7×a×a and, 14a=2×7×a The two terms have 7 and a as common factors 7a2+14a=(7×a×a)+(2×7×a) =7×a×(a+2)=7a(a+2) (iv) 16z=2×2×2×2×z 20z3=2×2×5×z×z×z The common factors are 2,2 , and z . ∴−16z+20z3=−(2×2×2×2×z)+ (2×2×5×z×z×z) =(2×2×z)[−(2×2)+(5×z×z)] =4z(−4+5z2) (v) We have, 20ℓ2 m=2×2×5×ℓ×ℓ×m and, 30aℓm=3×2×5×a×ℓ×m The two terms have 2,5,ℓ and m as common factors. ∴20ℓ2 m+30aℓm=(2×2×5×ℓ×ℓ ×m)+(3×2×5×a×ℓ×m) =2×5×ℓ×m×(2×ℓ+3×a) =10ℓ m(2ℓ+3a) (vi) 5x2y=5×x×x×y 15x2=3×5×x×y×y The common factors are 5,x, and y . ∴5x2y−15xy2 =(5×x×x×y)−(3×5×x×y×y) =5×x×y[x−(3×y)] =5xy(x−3y) (vii)We have, 10a2=2×5×a×a, 15b2=3×5×b×b and, 20c2=2×2×5×c×c The three terms have 5 as a common factor ∴10a2−15b2+20c2 =(2×5×a×a)−(3×5×b×b) +(2×2×5×c×c) =5×(2×a×a−3×b×b+4×c×c) =5(2a2−3 b2+4c2) (viii) We have, 4a2=2×2×a×a, 4ab=2×2×a×b and, 4ca=2×2×c×a The three terms have 2,2 and a as common factors ∴−4a2+4ab−4ca=−(2×2×a×a)+(2×2×a×b)−(2×2×c×a)=2×2×a×(−a+b−c)=4a(−a+b−c) (ix) x2yz=x×x×y×z xy2z=x×y×y×z xyz2=x×y×z×z The common factors are x,y, and z . ∴x2yz+xy2z+xyz2=(x×x×y×z) +(x×y×y×z)+(x×y×z×z) =x×y×z[x+y+z] =xyz(x+y+z) (x) We have, ax2y=a×x×x×y bxy2=b×x×y×y and, cxyz=c×x×y×z The three terms have x and y as common factors ∴a2y+bxy2+cxyz=(a×x×x×y) +(b×x×y×y)+(c×x×y×z) =x×y×(a×x+b×y+c×z) =xy(ax+by+cz)
  • Factorise : (i) x2+xy+8x+8y (ii) 15xy−6x+5y−2 (iii) ax+bx−ay−by (iv) 15pq+15+9q+25p (v) z−7+7xy−xyz Sol. (i) x2+xy+8x+8y=(x2+xy)+(8x+8y) =x(x+y)+8(x+y) =(x+y)(x+8) [Taking (x+y) common] (ii) 15xy−6x+5y−2 =3×5×x×y−3×2×x+5×y−2 =3x(5y−2)+1(5y−2) =(5y−2)(3x+1) (iii) ax+bx−ay−by=(ax+bx)−(ay+by) [Grouping the terms] =(a+b)x−(a+b)y =(a+b)(x−y) [Taking (a+b) common] (iv) 15pq+15+9q+25p =15pq+9q+25p+15 =3×5×p×q+3×3×q+5×5×p+3×5 =3q(5p+3)+5(5p+3) =(5p+3)(3q+5) (v) z−7+7xy−xyz=z−7−xyz+7xy =1(z−7)−xy(z−7) =(z−7)(1−xy) [Taking (z-7) common]

Exercise : 12.2

  • Factorise the following expressions : (i) a2+8a+16 (ii) p2−10p+25 (iii) 25m2+30m+9 (iv) 49y2+84yz+36z2 (v) 4x2−8x+4 (vi) 121b2−88bc+16c2 (vii) (ℓ+m)2−4ℓm (viii) a4+2a2b2+b4 Sol. (i) a2+8a+16=a2+2×a×4+42 =(a+4)2 [Using : a2+2ab+b2=(a+b)2] =(a+4)(a+4) (ii) p2−10p+25=(p)2−2×p×5+(5)2 =(p−5)2[∵(a−b)2=a2−2ab+b2] (iii) 25 m2+30 m+9=(5 m)2+2×5 m×3+(3)2 =(5m+3)2 [Using : a2+2ab+b2=(a+b)2 ] =(5m+3)(5m+3) (iv) 49y2+84yz+36z2 =(7y)2+2×(7y)×(6z)+(6z)2 =(7y+6z)2 [∵(a+b)2=a2+2ab+b2] (v) 4x2−8x+4=4(x2−2x+1) =4(x2−2×x×1+12) =4(x−1)2 [Using : a2−2ab+b2=(a−b)2 ] =4(x−1)(x−1) (vi) 121b2−88bc+16c2 =(11b)2−2(11b)(4c)+(4c)2 =(11b−4c)2 [∵(a−b)2=a2−2ab+b2] (vii) (ℓ+m)2−4ℓm=ℓ2+2ℓm+m2−4ℓm =ℓ2−2ℓ m+m2=(ℓ−m)2=(ℓ−m)(ℓ−m) (viii) a4+2a2b2+b4=(a2)2+2(a2)(b2)+(b2)2 =(a2+b2)2 [∵(a+b)2=a2+2ab+b2]
  • Factorise (i) 4p2−9q2 (ii) 63a2−112b2 (iii) 49x2−36 (iv) 16x5−144x3 (v) (ℓ+m)2−(ℓ−m)2 (vi) 9x2y2−16 (vii) (x2−2xy+y2)−z2 (viii) 25a2−4b2+28bc−49c2 Sol. (i) 4p2−9q2=(2p)2−(3q)2 =(2p+3q)(2p−3q) [Using : a2−b2=(a+b)(a−b) ] (ii) 63a2−112b2=7(9a2−16b2) =7[(3a)2−(4b)2] =7(3a+4b)(3a−4b) [∵a2−b2=(a−b)(a+b)] (iii) 49x2−36=(7x)2−(6)2 =(7x−6)(7x+6) [∵a2−b2=(a−b)(a+b)] (iv) 16x5−144x3=16x3(x2−9) =16x3[(x)2−(3)2] =16x3(x−3)(x+3) [∵a2−b2=(a−b)(a+b)] (v) (ℓ+m)2−(ℓ−m)2 =[(ℓ+m)+(ℓ−m)][(ℓ+m)−(ℓ−m)] =(2ℓ)(2m)=4ℓm[∵a2−b2=(a−b)(a+b)] (vi) 9x2y2−16=(3xy)2−(4)2 =(3xy−4)(3xy+4) [∵a2−b2=(a−b)(a+b)] (vii) (x2−2xy+y2)−z2 =(x−y)2−(z)2 [∵(a−b)2=a2−2ab+b2] =(x−y−z)(x−y+z) [∵a2−b2=(a−b)(a+b)] (viii) 25a2−4b2+28bc−49c2 =25a2−(4 b2−28bc+49c2) =(5a)2−[(2b)2−2×2b×7c+(7c)2] =(5a)2−[(2b−7c)2] [Using identity (a−b)2=a2−2ab+b2 ] =[5a+(2 b−7c)][5a−(2 b−7c)] [Using identity a2−b2=(a−b)(a+b) ] =(5a+2b−7c)(5a−2b+7c)
  • Factorise the following expressions (i) ax2+bx (ii) 7p2+21q2 (iii) 2x3+2xy2+2xz2 (iv) am2+bm2+bn2+an2 (v) (ℓm+ℓ)+m+1 (vi) y(y+z)+9(y+z) (vii) 5y2−20y−8z+2yz (viii) 10ab+4a+5b+2 (ix) 6xy−4y+6−9x Sol. (i) ax2+bx=x(ax+b) (ii) 7p2+21q2=7×p×p+3×7×q×q =7(p2+3q2) (iii) 2x3+2xy2+2xz2=2x(x2+y2+z2) (iv) am2+bm2+bn2+an2 =(am2+bm2)+(bn2+an2)=(a+b)m2+(b+a)n2=(a+b)(m2+n2) (v) (ℓm+ℓ)+m+1=ℓ(m+1)+1(m+1) =(m+1)(ℓ+1) (vi) y(y+z)+9(y+z)=(y+z)(y+9) (vii) 5y2−20y−8z+2yz=5y2−20y+2yz−8z =5y(y−4)+2z(y−4)=(y−4)(5y+2z) (viii) 10ab+4a+5 b+2 =(10ab+5b)+(4a+2)=5b(2a+1)+2(2a+1)=(2a+1)(5b+2) (ix) 6xy−4y+6−9x=6xy−9x−4y+6 =3x(2y−3)−2(2y−3)=(2y−3)(3x−2)
  • Factorise as far as you can : (i) a4−b4 (ii) p4−81 (iii) x4−(y+z)4 (iv) x4−(x−z)4 (v) a4−2a2b2+b4 Sol. (i) a4−b4=(a2)2−(b2)2 =(a2+b2)(a2−b2)=(a2+b2)(a+b)(a−b) (ii) p4−81=(p2)2−(9)2 =(p2−9)(p2+9) =[(p)2−(3)2](p2+9) =(p−3)(p+3)(p2+9) (iii) x4−(y+z)4=(x2)2−[(y+z)2]2 =[x2−(y+z)2][x2+(y+z)2] =[x−(y+z)][x+(y+z)][x2+(y+z)2] =(x−y−z)(x+y+z)[x2+(y+z)2] (iv) x4−(x−z)4=(x2)2−[(x−z)2]2 =[x2−(x−z)2][x2+(x−z)2] =[x−(x−z)][x+(x−z)][x2+(x−z)2] =z(2x−z)(x2+x2−2xz+z2) =z(2x−z)(2x2−2xz+z2) (v) a4−2a2b2+b4=(a2)2−2×a2×b2+(b2)2 =(a2−b2)2=[(a+b)(a−b)]2 =(a+b)2(a−b)2 =(a+b)(a+b)(a−b)(a−b)
  • Factorise the following expressions (i) p2+6p+8 (ii) q2−10q+21 (iii) p2+6p−16 Sol. (i) p2+6p+8=(p2+6p+9)−1 [Using : 8=9-1] =(p2+2×p×3+32)−1 =(p+3)2−12=(p+3+1)(p+3−1) =(p+4)(p+2) (ii) q2−10q+21 It can be observed that, 21=(−7)×(−3) and (−7)+(−3)=−10 ∴q2−10q+21=q2−7q−3q+21 =q(q−7)−3(q−7) =(q−7)(q−3) (iii) p2+6p−16=(p2+6p+9)−9−16 =(p+3)2−52=(p+3+5)(p+3−5) =(p+8)(p−2)

Exercise : 12.3

  • Carry out the following division (i) 28x4÷56x (ii) −36y3÷9y2 (iii) 66pq2r3÷11qr2 (iv) 34x3y3z3÷51x2z3 (v) 12a8b8÷(−6a6b4) Sol. (i) 28x4÷56x =28×2×x28×x×x×x×x​=2x×x×x​=2x3​ (ii) 36y3=2×2×3×3×y×y×y 9y2=3×3×y×y −36y3÷9y2=3×3×y×y−2×2×3×3×y×y×y​ =−4y (iii) 66pq2r3÷11qr2 =11×q×r×r6×11×p×q×q×r×r×r​ =16×p×q×r​=6pqr (iv) 34x3y3z3 =2×17×x×x×x×y×y×y×z×z×z 51xy2z3=3×17×x×y×y×z×z×z 34x3y3z3÷51x2z3 =3×17×x×y×y×z×z×z2×17×x×x×x×y×y×y×z×z×z​ =32​x2y (v) 12a8b8÷(−6a6b4) 6×2×a×a×a×a×a×a×a×a×b×b =−1×6×a×a×a×a×a×a×b×b×b×b×b×b×b×b×b×b​=−12×a×a×b×b×b×b​=−2a2b4
  • Divide the given polynomial by the given monomial. (i) (5x2−6x)÷3x (ii) (3y8−4y6+5y4)÷y4 (iii) 8(x3y2z2+x2y3z2+x2y2z3)÷4x2y2z2 (iv) (x3+2x2+3x)÷2x (v) (p3q6−p6q3)÷p3q3 Sol. (i) (5x2−6x)÷3x=3x5x2−6x​=3x5x2​−3x6x​ =35​x−2=31​(5x−6) (ii) 3y8−4y6+5y4=y4(3y4−4y2+5) (3y8−4y6+5y4)÷y4 =y4y4(3y4−4y2+5)​ =3y4−4y2+5 (iii) 8(x3y2z2+x2y3z2+x2y2z3)÷4x2y2z2 (iv) x3+2x2+3x=x(x2+2x+3) (x3+2x2+3x)÷2x=2xx(x2+2x+3)​=21​(x2+2x+3) (v) (p3q6−p6q3)÷p3q3=p3q3p3q6−p6q3​ =p3q3p3q3(q3−p3)​=q3−p3
  • Work out the following divisions. (i) (10x−25)÷5 (ii) (10x−25)÷(2x−5) (iii) 10y(6y+21)÷5(2y+7) (iv) 9x2y2(3z−24)÷27xy(z−8) (v) 96abc(3a−12)(5b−30)÷144(a−4)(b−6) Sol. (i) (10x−25)÷5=510x−25​=55×(2x−5)​ =2x−5 (ii) (10x−25)÷(2x−5)=(2x−5)2×5×x−5×5​ =2x−55(2x−5)​=5 (iii) 10y(6y+21)÷5(2y+7) =5(2y+7)10y(6y+21)​=5×(2y+7)5×2×y×3×(2y+7)​=12×y×3​=6y (iv) 9x2y2(3z−24)÷27xy(z−8) =27xy(z−8)9x2y2[3×z−2×2×2×3]​=3(z−8)xy×3(z−8)​=xy (v) 96abc(3a−12)(5b−30)÷144(a−4) (b-6) =144(a−4)(b−6)96abc(3a−12)(5 b−30)​ =48×3×(a−4)×(b−6)48×2×abc×3×(a−4)×5×(b−6)​ =12×abc×5​=10abc
  • Divide as directed. (i) 5(2x+1)(3x+5)÷(2x+1) (ii) 26xy(x+5)(y−4)÷13x(y−4) (iii) 52pqr(p+q)(q+r)(r+p)÷104pq(q +r)(r+p) (iv) 20(y+4)(y2+5y+3)÷5(y+4) (v) x(x+1)(x+2)(x+3)÷x(x+1) Sol. (i) 5(2x+1)(3x+5)÷(2x+1) =(2x+1)5(2x+1)(3x+5)​=15(3x+5)​=5(3x+5) (ii) 26xy(x+5)(y−4)÷13x(y−4) =13x(y−4)2×13×xy(x+5)(y−4)​=2y(x+5) (iii) 52pqr(p+q)(q+r)(r+p)÷104pq (q+r)(r+p)=52×2×p×q×(q+r)×(r+p)52×p×q×r×(p+q)×(q+r)×(r+p)​=21​r(p+q) (iv) 20(y+4)(y2+5y+3) =2×2×5×(y+4)(y2+5y+3) 20(y+4)(y2+5y+3)÷5(y+4)=5×(y+4)2×2×5×(y+4)×(y2+5y+3)​=4(y2+5y+3) (v) x(x+1)(x+2)(x+3)÷x(x+1) =x(x+1)x(x+1)(x+2)(x+3)​=1(x+2)(x+3)​ =(x+2)(x+3)
  • Factorise the expressions and divide them as directed. (i) (y2+7y+10)÷(y+5) (ii) (m2−14m−32)÷(m+2) (iii) (5p2−25p+20)÷(p−1) (iv) 4yz(z2+6z−16)÷2y(z+8) (v) 5pq(p2−q2)÷2p(p+q) (vi) 12xy(9x2−16y2)÷4xy(3x+4y) (vii) 39y3(50y2−98)÷26y2(5y+7) Sol. (i) (y2+7y+10)=y2+2y+5y+10 =y(y+2)+5(y+2) =(y+2)(y+5) ∴(y2+7y+10)÷(y+5) =y+5(y+2)(y+5)​[Using(1)] =y+2 (ii) m2−14m−32=m2+2m−16m−32 =m(m+2)−16(m+2) =(m+2)(m−16) Now, (m2−14m−32)÷(m+2) =(m+2)(m+2)(m−16)​=m−16 (iii) (5p2−25p+20)=5(p2−5p+4) =5(p2−p−4p+4) =5[p(p−1)−4(p−1)] =5(p−1)(p−4) ∴(5p2−25p+20)÷(p−1) =p−15p2−25p+20​ =p−15(p−1)(p−4)​[ Using (1)] =5(p−4) (iv) 4yz(z2+6z−16)=4yz(z2+8z−2z−16) =4yz[z(z+8)−2(z+8) =4yz(z+8)(z−2) ∴4yz(z2+6z−16)÷2y(z+8) =2y(z+8)4yz(z2+6z−16)​=2y(z+8)4yz(z+8)(z−2)​ [Using (1)] =12z(z−2)​=2z(z−2) (v) 5pq(p2−q2)=5pq(p−q)(p+q)…(1) ∴5pq(p2−q2)÷2p(p+q) =2p(p+q)5pq(p2−q2)​ =2×p×(p+q)5×p×q×(p−q)×(p+q)​[ Using (1) ] =25​q(p−q) (vi) 12xy(9x2−16y2)=12xy[(3x)2− (4y) 2 ] =12xy(3x−4y)(3x+4y) =12xy(9x2−16y2)÷4xy(3x+4y) =2×2×x×y×(3x+4y)2×2×3×x×y×(3x−4y)×(3x+4y)​ =3(3x−4y) (vii) 39y3(50y2−98)÷26y2(5y+7) ⇒39y3(50y2−98)=3×13×y×y× y×2[(25y2−49)] =3×13×2×y×y×y×[(5y)2−(7)2] =3×13×2×y×y×y×(5y−7)(5y+7) ⇒26y2(5y+7)=2×13×y×y×(5y+7) ⇒39y3(50y2−98)÷26y2(5y+7) 2×13×y×y×(5y+7)3×13×2×y×y×y×(5y−7)(5y+7)​ =3y(5y−7)

NCERT Solutions for Class 8 Maths Other Chapters:-

Chapter 1: Rational Numbers

Chapter 2: Linear Equations in One Variable

Chapter 3: Understanding Quadrilaterals

Chapter 4: Data Handling

Chapter 5: Squares and Square Roots

Chapter 6: Cubes and Cube Roots

Chapter 7: Comparing Quantities

Chapter 8: Algebraic Expressions and Identities

Chapter 9: Mensuration

Chapter 10: Exponents and Powers

Chapter 11: Direct and Inverse Proportions

Chapter 12: Factorisation

Chapter 13: Introduction to Graphs


CBSE Notes for Class 8 Maths - All Chapters:-

Class 8 Maths Chapter 1 - Rational Numbers Notes

Class 8 Maths Chapter 2 - Linear Equations In One Variable Notes

Class 8 Maths Chapter 3 - Understanding Quadrilaterals Notes

Class 8 Maths Chapter 4 - Data Handling Notes

Class 8 Maths Chapter 5 - Squares and Square Roots Notes

Class 8 Maths Chapter 6 - Cubes and Cube Roots Notes

Class 8 Maths Chapter 7 - Comparing Quantities Notes

Class 8 Maths Chapter 8 - Algebraic Expressions and Identities Notes

Class 8 Maths Chapter 9 - Mensuration Notes

Class 8 Maths Chapter 10 - Exponents and Powers Notes

Class 8 Maths Chapter 11 - Direct and Inverse Proportions Notes

Class 8 Maths Chapter 12 - Factorisation Notes

Class 8 Maths Chapter 13 - Introduction to Graphs Notes

Frequently Asked Questions

Absolutely! Practising each question strengthens problem-solving skills and ensures a solid grasp of the chapter’s concepts, making you exam-ready.

Chapter 12 includes 11 engaging questions spread across 2 exercises, covering all crucial concepts related to exponents.

Dive into the essential laws of exponents with clear examples and exercises that make complex ideas easy to understand and apply!

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key
    • JEE Advanced 2025 Answerkey
    • JEE Advanced Rank Predictor

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO