• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
JEE
JEE Main Exam

Limit

1.0Introduction:

The concept of limit of a function is one of the fundamental ideas that distinguishes calculus from algebra and trigonometry. We use limits to describe the way a function f varies. Some functions vary continuously; small changes in x produce only small changes in f(x). Other functions can have values that jump or vary erratically. We also use limits to define tangent lines to graphs of functions. This geometric application leads at once to the important concept of derivative of a function

2.0Definition:

Let f(x) be defined on an open interval about ' a ' except possibly at ' a ' itself. If f(x) gets arbitrarily close to L (a finite number) for all x sufficiently close to ' a ' we say that f(x) approaches the limit L as x approaches ' a ' and we write limx→a​f(x)=L and say "the limit of f(x), as x approaches a, equals L ". This implies if we can make the value of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

3.0Left Hand Limit and Right Hand Limit of A Function:

The value to which f(x) approaches, as x tends to ' a ' from the left hand side ( x→a−) is called left hand limit of f(x) at x=a. Symbolically, LHL =limx→a−​f(x)=limh→0​f(a−h). The value to which f(x) approaches, as x tends to ' a′ ' from the right hand side (x→a+)is called right hand limit of f(x) at x=a. Symbolically, RHL =limx→a+​f(x)=limh→0​f(a+h). Limit of a function f(x) is said to exist as, x→a when limx→a−​f(x)=limx→a+​f(x)= Finite quantity.

Example:

Graph of y=f(x)

Fig. 1 limx→−1+​f(x)=limh→0​f(−1+h)=f(−1+)=−1 limx→0−​f(x)=limh→0​f(0−h)=f(0−)=0 limx→1−​f(x)=limh→0​f(1−h)=f(1−)=−1 limx→1+​f(x)=limh→0​f(1+h)=f(1+)=0 limx→2−​f(x)=limh→0​f(2−h)=f(2−)=1 limx→0​f(x)=0 and limx→1​f(x) does not exist.

Important Note:

In limx→a​f(x),x=ax→a necessarily implies. That is while evaluating limit at x=a, we are not concerned with the value of the function at x=a. In fact, the function may or may not be defined at x=a. Also, it is necessary to note that if f(x) is defined only on one side of ' x=a ', one sided limit are good enough to establish the existence of limits, & if f(x) is defined on either side of ' a ' both sided limits are to be considered. As in limx→1​cos−1x=0, though f(x) is not defined for x>1, even in its immediate vicinity.

Illustration 1:

Consider the adjacent graph of y=f(x) Find the following:

(a) limx→0−​f(x) (b) limx→0+​f(x) (c) limx→1−​f(x) (d) limx→1+​f(x) (e) limx→2−​f(x) (f) limx→2+​f(x) (g) limx→3−​f(x) (h) limx→3+​f(x) (i) limx→4−​f(x) (j) limx→4+​f(x) (k) limx→∞​f(x)=2 (l) limx→6−​f(x)=−∞

Solution:

(a) As x→0−: limit does not exist (the function is not defined to the left of x=0 ) (b) As x→0+:f(x)→−1⇒limx→0+​f(x)=−1. (c) As x→1−:f(x)→1⇒limx→1−​f(x)=1. (d) As x→1+:f(x)→2⇒limx→1+​f(x)=2. (e) As x→2−:f(x)→3⇒limx→2−​f(x)=3. (f) As x→2+:f(x)→3⇒limx→2−​f(x)=3. (g) As x→3−:f(x)→2⇒limx→3−​f(x)=2. (h) As x→3+:f(x)→3⇒limx→3+​f(x)=3. (i) As x→4−:f(x)→4⇒limx→4−​f(x)=4. (j) As x→4+:f(x)→4⇒limx→4+​f(x)=4. (k) As x→∞:f(x)→2⇒limx→∞​f(x)=2. (l) As x→6−,f(x)→−∞⇒limx→6−​f(x)=−∞ limit does not exist because it is not finite.

Illustration 2:

Let [t ] denote the greatest integer ≤t. If for some λ∈R−{0,1},limx→0​​λ−x+[x]1−x+∣x∣​​=L, then L is equal to : (A) 1 (B) 2 (C) 21​ (D) 0

Ans. (B)

Solution:

LHL: limx→0−​​λ−x−11−x−x​​=​λ−11​​ RHL : limx→0+​​λ−x+11−x+x​​=​λ1​​ For existence of limit LHL = RHL ⇒∣λ−1∣1​=∣λ∣1​⇒λ=21​ ∴L=∣λ∣1​=2

Illustration 3:

Let a be an integer such that limx→7​[x−3a]18−[1−x]​ exists, where [t] is greatest integer ≤t. Then a is equal to : (A) -6 (B) -2 (C) 2 (D) 6

Ans. (A)

Solution:

limx→7​[x]−3a18−[1−x]​ L.H.L. limx→7−​[x]−3a18−[1−x]​ =6−3a18−(−6)​ =6−3a24​ R.H.L. limx→7+​[x]−3a18−[1−x]​ =7−3a18−(−7)​ =7−3a25​ Now L.H.L. = R.H.L. 6−3a24​=7−3a25​ ⇒168−72a=150−75a ⇒18=−3a ⇒a=−6

Illustration 4:

Let f(x)={x−1,2x,​x is even x is odd, ​x∈N. If for some a∈N,f(ff(a)))=21, then limx→a−​{a∣x∣3​−[ax​]} where [t] denotes the greatest integer less than or equal to t, is equal to : (A) 121 (B) 144 (C) 169 (D) 225

Ans. (B)

Solution:

f(x)={x−1,2x,​x is even x is odd, ​ f(f(f(a)))=21 C-1: If a= even

f(a)=a−1= odd f(f(a))=2(a−1)= even f(f(f(a)))=2a−3=21⇒a=12

C-2: If a= odd f(a)=2a= even f(f(a))=2a−1= odd f(f(f(a)))=4a−2=21 (Not possible) Hence a=12 Now

limx→12−​(2∣x∣3​−[12x​])limx→12−​12∣x∣3​−limx→12−​[12x​]=144−0=144.

Illustration 5:

Let {x} denote the fractional part of x and f(x)={x}−{x}3cos−11−{x}2sin−1(1−{x})​,x=0. If L and R respectively denotes the left hand limit and the right hand limit of f(x) at x=0, then π232​(L2+R2) is equal to .

Ans. (18)

Solution:

Finding right hand limit

limx→0+​f(x)=limh→∞​f(0+h)=limh→0​f(h)=limh→0​h(1−h2)cos−1(1−h2)sin−1(1−h)​=limh→0​hcos−1(1−h2)​(1sin−11​)

Let cos−1(1−h2)=θ⇒cosθ=1−h2 =2π​limθ→0​1−cosθ​θ​ =2π​limθ→0​θ21−cosθ​​1​ =2π​1/2​1​ R=2​π​ Now finding left hand limit

L=limx→0−​f(x)=limh→0​f(−h)

=limh→0​{−h}−{−h}3cos−1(1−{−h}2)sin−1(1−{−h})​ =limh→0​(−h+1)−(−h+1)3cos−1(1−(−h+1)2)sin−1(1−(−h+1))​ =limh→0​(1−h)(1−(1−h)2)cos−1(−h2+2h)sin−1h​ =limh→0​(2π​)(1−(1−h)2)sin−1h​ 2π​limx→0​(−h2+2hsin−1h​) =2π​limh→0​(hsin−1h​)(−h+21​) L=4π​ π232​(L2+R2)=π232​(2π2​+16π2​) =16+2 =18

4.0Fundamental Theorems on Limits:

Let limx→a​f(x)=l&limx→a​g(x)=m. If l&m exist finitely then : (a) Sum rule: limx→a​{f(x)+g(x)}=l+m (b) Difference rule: limx→a​{f(x)−g(x)}=l−m (c) Product rule: limx→a​f(x)⋅g(x)=l⋅m (d) Quotient rule: limx→a​g(x)f(x)​=ml​, provided m=0 (e) Constant multiple rule : limx→a​kf(x)=klimx→a​f(x); where k is constant. (f) Power rule: If m and n are integers then limx→a​[f(x)]m/n=lm/n provided lm/n is a real number. (g) limx→a​f[g(x)]=f(limx→a​g(x))=f(m); provided f(x) is continuous at x=m.

For example : limx→a​ln(g(x))=ln[limx→a​g(x)] =ℓn(m); provided ℓnx is continuous at x=m,m=limx→a​g(x). 5. Indeterminate Forms: 00​,∞∞​,∞−∞,0×∞,1∞,00,∞0 Initially we will deal with first five forms only and the other two forms will come up after we have gone through differentiation. Note : (i) Here 0,1 are not exact, in fact both are approaching to their corresponding values. (ii) We cannot plot ∞ on the paper. Infinity ( ∞ ) is a symbol & not a number It does not obey the laws of elementary algebra, (a) ∞+∞→∞ (b) ∞×∞→∞ (c) ∞∞→∞ (d) 0∞→0 6. General Methods to be used to Evaluate Limits:

(a) Factorization:

Important factors:

(i) xn−an=(x−a)(xn−1+axn−2+ +an−1),n∈N (ii) xn+an=(x+a)(xn−1−axn−2+ +an−1),n is an odd natural number. Note: limx→a​x−axn−an​=nan−1

Illustration 6:

Evaluate: limx→2​[x−21​−x3−3x2+2x2(2x−3)​]

Solution:

We have

limx→2​[x−21​−x3−3x2+2x2(2x−3)​]=limx→2​[x−21​−x(x−1)(x−2)2(2x−3)​]=limx→2​[x(x−1)(x−2)x(x−1)−2(2x−3)​]=limx→2​[x(x−1)(x−2)x2−5x+6​]=limx→2​[x(x−1)(x−2)(x−2)(x−3)​]=limx→2​[x(x−1)x−3​]=−21​

5.0(b) Rationalization or Double Rationalization:

Illustration 7:

Evaluate: limx→1​2−3x+1​4−15x+1​​

Solution:

limx→1​2−3x+1​4−15x+1​​=limx→1​(2−3x+1​)(4+15x+1​)(2+3x+1​)(4−15x+1​)(2+3x+1​)(4+15x+1​)​ =limx→1​(3−3x)(15−15x)​×4+15x+1​2+3x+1​​=25​

Illustration 8:

Evaluate: limx→1​(x2+3​−5−x2​x2+8​−10−x2​​)

Solution:

This is of the form 2−23−3​=00​ if we put x=1 To eliminate the 00​ factor, multiply by the conjugate of numerator and the conjugate of the denominator ∴ Limit =limx→1​(x2+8​−10−x2​)(x2+8​+10−x2​)(x2+8​+10−x2)​​×(x2+3​+5−x2​)(x2+3​−5−x2​)(x2+3​+5−x2​)​ =limx→1​x2+8​+10−x2​x2+3​+5−x2​​×(x2+3)−(5−x2)(x2+8)−(10−x2)​=limx→1​(x2+8​+10−x2​x2+3​+5−x2​​)×1=3+32+2​=32​

Illustration 9:

If a=limx→0​x41+1+x4​​−2​​ and b=limx→0​2​−1+cosx​sin2x​, then the value of ab3 is : (A) 36 (B) 32 (C) 25 (D) 30

Ans. (B)

Solution:

a=limx→0​x41+1+x4​​−2​​=limx→0​x4(1+1+x4​​+2​)1+x4​−1​=limx→0​x4(1+1+x4​​+2​)(1+x4​+1)x4​

Applying limit a=42​1​ b=limx→0​2​−1+cosx​sin2x​ =limx→0​2−(1+cosx)(1−cos2x)(2​+1+cosx​)​ b=limx→0​(1+cosx)(2​+1+cosx​) Applying limits b=2(2​+2​)=42​ Now, ab3=42​1​×(42​)3=32 (c) Limit when x→∞ : (i) Divide by greatest power of x in numerator and denominator. (ii) Put x=1/y and apply y→0

Illustration 10:

Evaluate: limx→∞​3x2+2x−5x2+x+1​

Solution:

limx→∞​3x2+2x−5x2+x+1​,(∞∞​ form ) Put x=y1​ Limit =limy→0​3+2y−5y21+y+y2​=31​

Illustration 11:

If limx→∞​(x2+1x3+1​−(ax+b))=2, then (A) a=1,b=1 (B) a=1,b=2 (C) a=1,b=−2 (D) none of these

Ans. (C)

Solution:

limx→∞​(x2+1x3+1​−(ax+b))=2⇒limx→∞​x2+1x3(1−a)−bx2−ax+(1−b)​=2⇒limx→∞​1+x21​x(1−a)−b−xa​+x2(1−b)​​=2⇒1−a=0,−b=2⇒a=1,b=−2

Illustration 12:

If limn→∞​(n2−n−1​+nα+β)=0 then 8(α+β) is equal to : (A) 4 (B) -8 (C) -4 (D) 8

Ans. (C)

Solution:

limn→∞​n(1−n2n+1​)21​+αn+β=0 limn→∞​{{1−21​(n2n+1​)+2!(21​)(−21​)​(n2n+1​)2+….}+αn+β=0 limn→∞​n−21​+n1​+….+nα+β=0 α=−1,β=21​ 8(α+β)=−4 (d) Squeeze Play Theorem (Sandwich Theorem):

Statement: If f(x)≤g(x)≤h(x);∀x in the neighbourhood at x=a and limx→a​f(x)=ℓ=limx→a​h(x) then, limx→a​g(x)=ℓ

Ex. 1limx→0​x2sinx1​=0,

∵sin(x1​) lies between −1&1

⇒−x2≤x2sinx1​≤x2⇒limx→0​x2sinx1​=0 as limx→0​(−x2)=limx→0​x2=0

Ex. 2limx→0​xsinx1​=0

∵sin(x1​) lies between −1 1⇒−x≤xsinx1​≤x⇒limx→0​xsinx1​=0 as limx→0​(−x)=limx→0​x=0

Illustration 13:

Evaluate: limn→∞​n2[x]+[2x]+[3x]+…..[nx]​ (Where [.] denotes the greatest integer function.)

Solution:

We know that x−1<[x]≤x ⇒x+2x+….nx−n<∑r=1n​[rx]≤x+2x+………+nx ⇒2xn​(n+1)−n<∑r=1n​[rx]≤2x.n(n+1)​ ⇒2x​(1+n1​)−n1​<n21​∑r=1n​[rx]≤2x​(1+n1​) Now, limn→∞​2x​(1+n1​)=2x​ and limn→∞​2x​(1+n1​)−n1​=2x​ Thus, limn→∞​n2[x]+[2x]+…….+[nx]​=2x​

Illustration 14:

limn→∞​(1+n21+21​+………+n1​​)n is equal to : (A) 21​ (B) 0 (C) e1​ (D) 1

Ans. (D)

Solution:

Given limit is of 1∞ form So, l=exp(limn→∞​n1+21​+31​+………+n1​​) Now, 0≤1+21​+31​+….+n1​≤1+2​1​+3​1​+….+n​1​ So, l=exp(0) (from sandwich theorem) = 1

Illustration 15:

Let f:→R→(0,∞) be strictly increasing function such that limx→∞​f(x)f(7x)​=1. Then, the value of limx→∞​[f(x)f(5x)​−1] is equal to (A) 4 (B) 0 (C) 7/5 (D) 1

Ans. (B)

Solution:

f:R→(0,∞) limx→∞​f(x)f(7x)​=1 ∵f is increasing ∴f(x)<f(5x)<f(7x) ∵f(x)f(x)​<f(x)f(5x)​<f(x)f(7x)​ 1<limx→∞​f(x)f(5x)​<1 ∴[f(x)f(5x)​−1] ⇒1−1=0

6.0Limit of Trigonometric Functions:

limx→0​xsinx​=1=limx→0​xtanx​=limx→0​xtan−1x​=limx→0​xsin−1x​ [where x is measured in radians] If limx→a​f(x)=0, then limx→a​f(x)sinf(x)​=1, e.g., limx→1​(lnx)sin(lnx)​=1

Illustration 16:

Evaluate: limx→0​1−cosxx3cotx​

Solution:

limx→0​sinx(1−cosx)x3cosx​=limx→0​sinx⋅sin2xx3cosx(1+cosx)​=limx→0​sin3xx3​⋅cosx(1+cosx)=2

Illustration 17:

Evaluate: limx→0​x(2+x)sin(2+x)−2sin2​

Solution:

limx→0​x2(sin(2+x)−sin2)+xsin(2+x)​=limx→0​(x2⋅2⋅cos(2+2x​)sin2x​​+sin(2+x))=limx→0​2x​2cos(2+2x​)sin2x​​+limx→0​sin(2+x)=2cos2+sin2

Illustration 18:

Evaluate: limn→∞​tann+1b​sinna​​

Solution:

As n→∞,n1​→0 and na​ also tends to zero sinna​ should be written as na​sinna​​ so that it looks like limθ→0​θsinθ​ The given limit =limn→∞​(na​sinna​​)(tann+1b​n+1b​​)⋅n⋅ba(n+1)​ =limn→∞​(na​sinna​​)(tann+1b​n+1b​​)⋅ba​(1+n1​)=1×1×ba​×1=ba​

7.0Illustration 19:

limx→0​sin2xcot2(2x)xcot(4x)​ is equal to :- (A) 2 (B) 0 (C) 4 (D) 1

Ans. (D)

Solution:

limx→0​tan4xsin2xxtan22x​=limx→0​(4xtan4x​)4x(x2sin2x​)x2x(4x2tan22x​)4x2​=1

Illustration 20:

The value of limx→1​x4−2x3+2x−1(x2−1)sin2(πx)​ is equal to: (A) 6π2​ (B) 3π2​ (C) 2π2​ (D) π2

Ans. (D)

Solution:

limx→1​(x2−1)(x−1)2(x2−1)sin2πx​=limx→1​(π(1−x)sin((1−x)π))​)2π2=π2

Illustration 21:

The value of the limit limθ→0​sin(2πsin2θ)tan(πcos2θ)​ is equal to: (A) limθ→0​sin(2πsin2θ)tan(πcos2θ)​ (B) −41​ (C) 0 (D) 41​

Ans. (A)

Solution:

limθ→0​sin(2πsin2θ)tan(π(1−sin2θ))​ =limθ→0​sin(2πsin2θ)−tan(πsin2θ)​ =limθ→0​−(πsin2θtan(πsin2θ)​)(sin(2πsin2θ)2πsin2θ​)×21​ =2−1​

Illustration 22:

If limx→0​{x81​(1−cos2x2​−cos4x2​+cos2x2​cos4x2​)}=2−k, then the value of k is Ans. (8)

Solution:

limx→0​{x81​(1−cos2x2​−cos4x2​+cos2x2​cos4x2​)}=2−k ⇒limx→0​4(2x2​)2(1−cos2x2​)​16(4x2​)2(1−cos4x2​)​=81​×321​=2−k ⇒2−8=2−k⇒k=8.

Illustration 23:

If α is the positive root of the equation, p(x)=x2−x−2=0, then limx→α+​x+α−41−cos(p(x))​​ is equal to (A) 2​3​ (B) 23​ (C) 2​1​ (D) 21​

Ans. (A)

Solution:

x2−x−2=0 roots are 2&−1 ⇒limx→2+​(x−2)1−cos(x2−x−2)​​ =limx→2+​(x−2)2sin22(x2−x−2)​​​ =limx→2+​(x−2)2​sin(2(x−2)(x+1)​)​=2​3​

Illustration 24:

If α>β>0 are the roots of the equation ax2+bx+1=0, and limx→α1​​(2(1−αx)21−cos(x2+bx+a)​)21​=k1​(β1​−α1​), then k is equal to (A) 2β (B) 2α (C) α (D) β

Ans. (B)

Solution:

α,β are roots of ax2+bx+1=0 α1​,β1​ are roots of x2+bx+a=0, (by transformation) x2+bx+a=(x−α1​)(x−β1​) limx→α1​​[2(1−αx)21−cos(x−α1​)(x−β1​)​]21​=L ( By using limθ→0​θ21−cosθ​=21​ ) ⇒[4α2(α1​−β1​)2​]21​=L ⇒2αβ1​−α1​​=L Comparing k=2α

8.0Limit of Exponential Functions:

(a) limx→0​xax−1​=ℓ n a(a>0) In particular limx→0​xex−1​=1.

In general, if limx→a​f(x)=0, then limx→a​f(x)af(x)−1​=ℓ n a,a>0

Illustration 25:

Evaluate: limx→0​tanx−xetanx−ex​

Solution:

limx→0​tanx−xetanx−ex​=limx→0​tanx−xex×e(tanx−x)−ex​ =limx→0​tanx−xex(etanx−x−1)​=limx→0y→0​yex(ey−1)​ where y=tanx−x and limy→0​yey−1​=1 =e0×1[ as x→0,tanx−x→0] =1×1=1 (b) ( i) limx→0​(1+x)1/x=e=limx→∞​(1+x1​)x (Note: The base and exponent depend on the same variable.) In general, if limx→a​f(x)=0, then limx→a​(1+f(x))1/f(x)=e (ii) limx→0​xln(1+x)​=1 (iii) If limx→a​f(x)=1 and limx→a​ϕ(x)=∞, then; limx→a​[f(x)]ϕ(x)=ek where k=limx→a​ϕ(x)[f(x)−1]

Illustration 26:

limx→0​1+x2+x4​−1x(e(1+x2+x4​−1)/x−1)​ (A) does not exist. (B) is equal to e​. (C) is equal to 0 . (D) is equal to 1 .

Ans. (D)

Solution:

limx→0​1+x2+x4​−1x(e(1+x2+x4​−1)/x−1)​ ∵limx→0​x1+x2+x4​−1​ (from) limx→0​x(1+x2+x4​+1(1+x2+x4)−1​ limx→0​(1+x2+x4​+1)x(1+x2)​=0 So limx→0​1+x2+x4​−1x​e(x1+x2+x4​−1​)−1​​(00​ from ) limx→0​(x1+x2+x4​−1​)ex1+x2+x4​−1​−1​=1

Illustration 27:

Evaluate: limx→1​(log3​3x)logx​3

Solution:

limx→1​(log3​3x)logx​3=limx→1​(log3​3+log3​x)logx​3 =limx→1​(1+log3​x)1/log3​x=e∵logb​a=loga​b1​

Illustration 28:

Evaluate: limx→0​1−cosxxln(1+2tanx)​

Solution:

limx→0​1−cosxxln(1+2tanx)​=limx→0​x21−cosx​⋅x2xln(1+2tanx)​⋅2tanx2tanx​=4

Illustration 29:

limx→0​secx−cosxloge​(1−x+x2)+loge​(1+x+x2)​ is equal to : (A) 1 (B) -1 (C) e (D) 0

Ans. (A)

Solution:

limx→0​1−cos2x(ln(1+x2+x4))cosx​ limx→0​(x2sin2x​)x2(x2+x4ln(1+x2+x4)​)x2(1+x2)cosx​=1

Illustration 30:

Evaluate: limx→∞​(2x2+32x2−1​)4x2+2

Solution:

Since it is in the form of 1∞ limx→∞​(2x2+32x2−1​)4x2+2=elimx→∞​(2x2+32x2−1−2x2−3​)(4x2+2)=e−8

Illustration 31:

Evaluate: limx→∞​(5x2−17x2+1​)1−x3x5​

Solution:

Here f(x)=5x2−17x2+1​,ϕ(x)=1−x3x5​=1−x3x2⋅x3​=x31​−1x2​ ∴limx→∞​f(x)=57​&limx→∞​ϕ(x)→−∞ ⇒limx→∞​(f(x))ϕ(x)=(57​)−∞=0

Illustration 32:

limx→0​(1+sinx1+tanx​)cosecx is equal to (A) e (B) e1​ (C) 1 (D) None of these

Ans. (C)

Solution:

Given limit =limx→0​[(1+tanx)cosecx×1/(1+sinx)cosecx] =limx→0​[{(1+tanx)cotx}secx×{1/(1+sinx)cosecx}]=esec0⋅e1​=e⋅e1​=1

Illustration 33:

If limx→∞​(1+xa​+x2b​)2x=e2 then the values of a and b are (A) a=1,b=2 (B) a=1,b∈R (C) a∈R,b=2 (D) a∈R,b∈R

Ans. (B)

Solution:

Since, limx→∞​(1+xa​+x2b​)=1 ∴limx→∞​[(1+x2ax+b​)ax+bx2​]x2(ax+b)​=e2⇒limx→∞​x2(ax+b)​=e2⇒limx→∞​x2(ax+b)​=2⇒2a=2⇒a=1 Thus a=1 and b∈R.

Illustration 34:

Limx→0​xe−(1+2x)2x1​​ is equal to : (A) e (B) e−2​ (C) 0 (D) e−e2

Ans. (A)

Solution:

Limx→0​xe−e2x1​ln(1+2x)​=Limx→0​(−e)x(e2xln(1+2x)​−1−1)​ =Limx→0​(−e)2x2ln(1+2x)−2x​ =(−e)×(−1)2×24​=e

Illustration 35:

Given h(x)=limn→∞​x2n+1x2nf(x)+g(x)​,f(2)=5 and g(21​)=−3, then value of h(2)−2h(21​) is (Given f(x) and g(x) are bounded functions)

Ans. (11)

Solution:

h(x)=limn→∞​x2n+1x2nf(x)+g(x)​=⎩⎨⎧​g(x)2f(x)+g(x)​f(x)​∣x∣<1∣x∣=1∣x∣>1​ ∴h(2)−2h(21​)=f(2)−2g(21​)=5−2(−3)=11

9.0Limit using Series Expansion:

Expansion of function like binomial expansion, exponential & logarithmic expansion, expansion of sinx,cosx,tanxshould be remembered by heart which are given below : (a) ax=1+1!xℓna​+2!x2ℓn2a​+3!x3ℓn3a​+…,x∈R,a>0,a=1 (b) ex=1+1!x​+2!x2​+3!x3​+…,x∈R (c) ln(1+x)=x−2x2​+3x3​−4x4​+… for −1<x≤1 (d) sinx=x−3!x3​+5!x5​−7!x7​+…,x∈R (e) cosx=1−2!x2​+4!x4​−6!x6​+…,x∈R (f) tanx=x+3x3​+152x5​+…,−2π​<x<2π​ (g) tan−1x=x−3x3​+5x5​−7x7​+…,x∈(−1,1) (h) sin−1x=x+3!12​x3+5!12⋅32​x5+7!12⋅32⋅52​x7+…,x∈(−1,1) (i) sec−1x=1+2!x2​+4!5x4​+6!61x6​+…,x∈(−∞,−1)∪(1,∞) (j) (1+x)n=1+nx+2!n(n−1)​x2+…,n∈R,x∈(−1,1)

Illustration 36:

limx→0​x−sinxex−e−x−2x​ Solution: limx→0​x−sinxex−e−x−2x​⇒limx→0​x−(x−3!x3​+5!x5​…..)1+x+2!x2​+3!x3​+……−(1−x+2!x2​−3!x3​+…..)−2x​ ⇒limx→0​6x3​+5!x5​…..2⋅6x3​+2⋅5!x5​+…...​⇒limx→0​x3(61​+1201​x2+…..)x3(31​+601​x2+…..)​=1/61/3​=2

Illustration 37:

If limx→0​3x3sin−1x−tan−1x​ is equal to L, then the value of (6L+1) is (A) 61​ (B) 21​ (C) 6 (D) 2

Ans. (D)

Solution:

limx→0​3x3(x+3!x3​…)−(x−3x3​…)​=61​ So 6L+1=2

Illustration 38:

If limx→0​x2sinxax2ex−bloge​(1+x)+cxe−x​=1, then 16(a2+b2+c2) is equal to . Ans. (81)

Solution:

limx→0​x3⋅xsinx​+cx(1−x+x!x2​−3!x3​+……..)​

=limx→∞​x3(c−b)x+(2b​−c+a)x2+(a−3b​+2c​)x3+…….​=1 c−b=0,2b​−c+a=0 a−3b​+2c​=1a=43​b=c=23​ a2+b2+c2=169​+49​+49​ 16(a2+b2+c2)=81

Illustration 39:

If limx→0​3tan2x3+αsinx+βcosx+loge​(1−x)​=31​, then 2α−β is equal to: (A) 2 (B) 7 (C) 5 (D) 1

Ans. (C)

Solution:

limx→0​3tan2x3+αsinx+βcosx+loge​(1−x)​=31​ ⇒limx→0​3tan2x3+α[x−3!x3​+…]+β[1−2!x2​+4!x4​…]+(−x−2x2​−3x3​…)​=31​ ⇒limx→0​3x2(3+β)+(α−1)x+(−21​−2β​)x2+…​×tan2xx2​=31​ ⇒β+3=0,α−1=0 and 3−21​−2β​​=31​ ⇒β=−3,α=1 ⇒2α−β=2+3=5

Illustration 40:

Evaluate limx→0​sinxπ​.

Solution:

Again, the function f(x)=sin(π/x) is undefined at 0 . Evaluating the function for some small values of x, we get f(1)=sinπ=0,f(21​)=sin2π=0, f(0.1)=sin10π=0,f(0.01)=sin100π=0. Based on this information, we might be tempted to guess that limx→0​sinxπ​=0 but this time our guess is wrong. Note that although f(1/n)=sinnπ=0 for any integer n, it is also true that f(x)=1 for infinitely many values of x that approach 0 . [In fact, sin(π/x)=1 when xπ​=2π​+2nπ and solving for x, we get x=2/(4n+1)]. The graph of f is given in following figure

The dashed line indicates that the values of sin(π/x) oscillate between 1 and -1 infinitely often as x approaches 0 . Since the values of f(x) do not approach a fixed number as x approaches 0 , ⇒limx→0​sinxπ​ does not exist.

Illustration 41:

limx→0​{x5sinx−x+6x3​​}= (A) 1/120 (B) −1/120 (C) 1/20 (D) None of these

Ans. (A)

Solution:

Expand sinx and then solve. sinx=x−3!x3​+5!x5​−7!x7​+…..limx→0​x5x−6x3​+120x5​−…..x+6x3​​=1201​

Illustration 42:

Let f:(−∞,∞)−{0}→R be a differentiable function such that f′(1)=lima→∞​a2f(a1​). Then lima→∞​2a(a+1)​tan−1(a1​)+a2−2loge​a is equal to (A) 23​+4π​ (B) 83​+4π​ (C) 25​+8π​ (D) 43​+8π​

Ans. (C)

Solution:

f:(−∞,∞)−{0}→R f′(1)=lima→∞​a2f(a1​) lima→∞​2a(a+1)​tan−1(a1​)+a2−2ln(a) lima→∞​a2(2(1+a1​)​tan−1(a1​)+1−a22​ln(a)) f(x)=21​(1+x)tan−1(x)+1−2x2ln(x) f′(x)=21​(1+x21+x​+tan−1(x)+4xln(x))+2x f′(1)=21​(1+4π​)+2 f′(1)=25​+8π​

Illustration 43:

The value of limx→0​2(x21−cosxcos2x​3cos3x​…..10cos10x​​) is - Ans. (55)

Solution:

limx→0​2(x21−(1−2!x2​)(1−2!4x2​)(1−2!9x2​)…..(1−2!100x2​)​) By expansion limx→0​x22(1−(1−2x2​))(1−21​⋅24x2​)(1−31​⋅29x2​)⋯…(1−101​⋅2100x2​)​ limx→0​2(x21−(1−2x2​)(1−22x2​)(1−23x2​)⋯(1−210x2​)​) limx→0​x22(1−1+x2(21​+22​+23​+…..+210​))​ 2(21​+22​+23​+…..+210​) 1+2+……+10=210×11​=55

Illustration 44:

If α,β are the distinct roots of x2+bx+c=0, then limx→β​(x−β)2e2(x2+bx+c)−1−2(x2+bx+c)​ is equal to: (A) b2+4c (B) 2(b2+4c) (C) 2(b2−4c) (D) b2−4c

Ans. (C)

Solution:

limx→β​(x−β)2e2(x2+bx+c)−1−2(x2+bx+c)​ ⇒limx→β​(x−β)21(1+1!2(x2+bx+c)​+2!22(x2+bx+c)2​+…)−1−2(x2+bx+c)​⇒limx→β​(x−β)22(x2+bx+1)2​ ⇒limx→β​(x−β)22(x−α)2(x−β)2​ ⇒2(β−α)2=2(b2−4c)

10.0Illustration 45:

limx→2​(∑n=19​n(n+1)x2+2(2n+1)x+4x​) is equal to : (A) 449​ (B) 245​ (C) 51​ (D) 367​

Ans. (A)

Solution:

S=limx→2​∑n=19​n(n+1)x2+2(2n+1)x+4x​ S=∑n=19​4(n2+3n+2)2​=21​∑n=19​(n+11​−n+21​) S=21​(21​−111​)=449​

On this page


  • 1.0Introduction:
  • 2.0Definition:
  • 3.0Left Hand Limit and Right Hand Limit of A Function:
  • 3.1Important Note:
  • 3.2Illustration 1:
  • 3.3Solution:
  • 3.4Illustration 2:
  • 3.5Solution:
  • 3.6Illustration 3:
  • 3.7Solution:
  • 3.8Illustration 4:
  • 3.9Solution:
  • 3.10Illustration 5:
  • 3.11Solution:
  • 4.0Fundamental Theorems on Limits:
  • 4.1(a) Factorization:
  • 4.1.1Important factors:
  • 4.2Illustration 6:
  • 4.3Solution:
  • 5.0(b) Rationalization or Double Rationalization:
  • 5.1Illustration 7:
  • 5.2Solution:
  • 5.3Illustration 8:
  • 5.4Solution:
  • 5.5Illustration 9:
  • 5.6Solution:
  • 5.7Illustration 10:
  • 5.8Solution:
  • 5.9Illustration 11:
  • 5.10Solution:
  • 5.11Illustration 12:
  • 5.12Solution:
  • 5.13Illustration 13:
  • 5.14Solution:
  • 5.15Illustration 14:
  • 5.16Solution:
  • 5.17Illustration 15:
  • 5.18Solution:
  • 6.0Limit of Trigonometric Functions:
  • 6.1Illustration 16:
  • 6.2Solution:
  • 6.3Illustration 17:
  • 6.4Solution:
  • 6.5Illustration 18:
  • 6.6Solution:
  • 7.0Illustration 19:
  • 7.1Solution:
  • 7.2Illustration 20:
  • 7.3Solution:
  • 7.4Illustration 21:
  • 7.5Solution:
  • 7.6Illustration 22:
  • 7.7Solution:
  • 7.8Illustration 23:
  • 7.9Solution:
  • 7.10Illustration 24:
  • 7.11Solution:
  • 8.0Limit of Exponential Functions:
  • 8.1Illustration 25:
  • 8.2Solution:
  • 8.3Illustration 26:
  • 8.4Solution:
  • 8.5Illustration 27:
  • 8.6Solution:
  • 8.7Illustration 28:
  • 8.8Solution:
  • 8.9Illustration 29:
  • 8.10Solution:
  • 8.11Illustration 30:
  • 8.12Solution:
  • 8.13Illustration 31:
  • 8.14Solution:
  • 8.15Illustration 32:
  • 8.16Solution:
  • 8.17Illustration 33:
  • 8.18Solution:
  • 8.19Illustration 34:
  • 8.20Solution:
  • 8.21Illustration 35:
  • 8.22Solution:
  • 9.0Limit using Series Expansion:
  • 9.1Illustration 36:
  • 9.2Illustration 37:
  • 9.3Solution:
  • 9.4Illustration 38:
  • 9.5Solution:
  • 9.6Illustration 39:
  • 9.7Solution:
  • 9.8Illustration 40:
  • 9.9Solution:
  • 9.10Illustration 41:
  • 9.11Solution:
  • 9.12Illustration 42:
  • 9.13Solution:
  • 9.14Illustration 43:
  • 9.15Solution:
  • 9.16Illustration 44:
  • 9.17Solution:
  • 10.0Illustration 45:
  • 10.1Solution:

Related Article:-

Algebraic Expressions

An expression, its terms and factors of the terms can be represented by a tree diagram to make it easily comprehensible to you......

Data Handling

The word data means information in the form of numerical figures or a set of given facts. E.g. The percentage of marks scored by 10 students.......

The Triangles and its Properties

A closed figure formed by joining three non-collinear points is called a triangle. The three sides and three angles of a triangle are collectively known as elements of the triangle......

Visualising Solid Shapes

A solid is any enclosed three-dimensional shape, i.e., it has 3 dimensions- length, width and height, whereas there are some common (flat) shapes which can be easily drawn on paper. They have only.....

Fractions

Fractions having the same denominator are called like fractions, whereas fractions having different denominator are called unlike fractions......

Perimeter and Area

Mensuration : The process, art or the act of measuring is called mensuration. Anything that can be measured is said to be mensurable.......

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO