The concept of limit of a function is one of the fundamental ideas that distinguishes calculus from algebra and trigonometry. We use limits to describe the way a function f varies. Some functions vary continuously; small changes in x produce only small changes in f(x). Other functions can have values that jump or vary erratically. We also use limits to define tangent lines to graphs of functions. This geometric application leads at once to the important concept of derivative of a function
2.0Definition:
Let f(x) be defined on an open interval about ' a ' except possibly at ' a ' itself. If f(x) gets arbitrarily close to L (a finite number) for all x sufficiently close to ' a ' we say that f(x) approaches the limit L as x approaches ' a ' and we write limx→af(x)=L and say "the limit of f(x), as x approaches a, equals L ".
This implies if we can make the value of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.
3.0Left Hand Limit and Right Hand Limit of A Function:
The value to which f(x) approaches, as x tends to ' a ' from the left hand side ( x→a−) is called left hand limit of f(x) at x=a. Symbolically, LHL =limx→a−f(x)=limh→0f(a−h).
The value to which f(x) approaches, as x tends to ' a′ ' from the right hand side (x→a+)is called right hand limit of f(x) at x=a. Symbolically, RHL =limx→a+f(x)=limh→0f(a+h).
Limit of a function f(x) is said to exist as, x→a when limx→a−f(x)=limx→a+f(x)= Finite quantity.
Example:
Graph of y=f(x)
Fig. 1
limx→−1+f(x)=limh→0f(−1+h)=f(−1+)=−1limx→0−f(x)=limh→0f(0−h)=f(0−)=0limx→1−f(x)=limh→0f(1−h)=f(1−)=−1limx→1+f(x)=limh→0f(1+h)=f(1+)=0limx→2−f(x)=limh→0f(2−h)=f(2−)=1limx→0f(x)=0 and limx→1f(x) does not exist.
Important Note:
In limx→af(x),x=ax→a necessarily implies. That is while evaluating limit at x=a, we are not concerned with the value of the function at x=a. In fact, the function may or may not be defined at x=a.
Also, it is necessary to note that if f(x) is defined only on one side of ' x=a ', one sided limit are good enough to establish the existence of limits, & if f(x) is defined on either side of ' a ' both sided limits are to be considered.
As in limx→1cos−1x=0, though f(x) is not defined for x>1, even in its immediate vicinity.
Illustration 1:
Consider the adjacent graph of y=f(x) Find the following:
(a) As x→0−: limit does not exist (the function is not defined to the left of x=0 )
(b) As x→0+:f(x)→−1⇒limx→0+f(x)=−1.
(c) As x→1−:f(x)→1⇒limx→1−f(x)=1.
(d) As x→1+:f(x)→2⇒limx→1+f(x)=2.
(e) As x→2−:f(x)→3⇒limx→2−f(x)=3.
(f) As x→2+:f(x)→3⇒limx→2−f(x)=3.
(g) As x→3−:f(x)→2⇒limx→3−f(x)=2.
(h) As x→3+:f(x)→3⇒limx→3+f(x)=3.
(i) As x→4−:f(x)→4⇒limx→4−f(x)=4.
(j) As x→4+:f(x)→4⇒limx→4+f(x)=4.
(k) As x→∞:f(x)→2⇒limx→∞f(x)=2.
(l) As x→6−,f(x)→−∞⇒limx→6−f(x)=−∞ limit does not exist because it is not finite.
Illustration 2:
Let [t ] denote the greatest integer ≤t. If for some λ∈R−{0,1},limx→0λ−x+[x]1−x+∣x∣=L, then L is equal to :
(A) 1
(B) 2
(C) 21
(D) 0
Ans. (B)
Solution:
LHL: limx→0−λ−x−11−x−x=λ−11
RHL : limx→0+λ−x+11−x+x=λ1
For existence of limit
LHL = RHL
⇒∣λ−1∣1=∣λ∣1⇒λ=21∴L=∣λ∣1=2
Illustration 3:
Let a be an integer such that limx→7[x−3a]18−[1−x] exists, where [t] is greatest integer ≤t. Then a is equal to :
(A) -6
(B) -2
(C) 2
(D) 6
Ans. (A)
Solution:
limx→7[x]−3a18−[1−x]
L.H.L. limx→7−[x]−3a18−[1−x]=6−3a18−(−6)=6−3a24
R.H.L. limx→7+[x]−3a18−[1−x]=7−3a18−(−7)=7−3a25
Now L.H.L. = R.H.L.
6−3a24=7−3a25⇒168−72a=150−75a⇒18=−3a⇒a=−6
Illustration 4:
Let f(x)={x−1,2x,x is even x is odd, x∈N. If for some a∈N,f(ff(a)))=21, then limx→a−{a∣x∣3−[ax]} where [t] denotes the greatest integer less than or equal to t, is equal to :
(A) 121
(B) 144
(C) 169
(D) 225
Ans. (B)
Solution:
f(x)={x−1,2x,x is even x is odd, f(f(f(a)))=21
C-1: If a= even
f(a)=a−1= odd f(f(a))=2(a−1)= even f(f(f(a)))=2a−3=21⇒a=12
C-2: If a= odd
f(a)=2a= even
f(f(a))=2a−1= odd
f(f(f(a)))=4a−2=21 (Not possible)
Hence a=12
Now
Let {x} denote the fractional part of x and f(x)={x}−{x}3cos−11−{x}2sin−1(1−{x}),x=0. If L and R respectively denotes the left hand limit and the right hand limit of f(x) at x=0, then π232(L2+R2) is equal to .
Let limx→af(x)=l&limx→ag(x)=m. If l&m exist finitely then :
(a) Sum rule: limx→a{f(x)+g(x)}=l+m
(b) Difference rule: limx→a{f(x)−g(x)}=l−m
(c) Product rule: limx→af(x)⋅g(x)=l⋅m
(d) Quotient rule: limx→ag(x)f(x)=ml, provided m=0
(e) Constant multiple rule : limx→akf(x)=klimx→af(x); where k is constant.
(f) Power rule: If m and n are integers then limx→a[f(x)]m/n=lm/n provided lm/n is a real number.
(g) limx→af[g(x)]=f(limx→ag(x))=f(m); provided f(x) is continuous at x=m.
For example : limx→aln(g(x))=ln[limx→ag(x)]=ℓn(m); provided ℓnx is continuous at x=m,m=limx→ag(x).
5. Indeterminate Forms:
00,∞∞,∞−∞,0×∞,1∞,00,∞0
Initially we will deal with first five forms only and the other two forms will come up after we have gone through differentiation.
Note :
(i) Here 0,1 are not exact, in fact both are approaching to their corresponding values.
(ii) We cannot plot ∞ on the paper. Infinity ( ∞ ) is a symbol & not a number It does not obey the laws of elementary algebra,
(a) ∞+∞→∞
(b) ∞×∞→∞
(c) ∞∞→∞
(d) 0∞→0
6. General Methods to be used to Evaluate Limits:
(a) Factorization:
Important factors:
(i) xn−an=(x−a)(xn−1+axn−2++an−1),n∈N
(ii) xn+an=(x+a)(xn−1−axn−2++an−1),n is an odd natural number.
Note: limx→ax−axn−an=nan−1
This is of the form 2−23−3=00 if we put x=1
To eliminate the 00 factor, multiply by the conjugate of numerator and the conjugate of the denominator
∴ Limit =limx→1(x2+8−10−x2)(x2+8+10−x2)(x2+8+10−x2)×(x2+3+5−x2)(x2+3−5−x2)(x2+3+5−x2)=limx→1x2+8+10−x2x2+3+5−x2×(x2+3)−(5−x2)(x2+8)−(10−x2)=limx→1(x2+8+10−x2x2+3+5−x2)×1=3+32+2=32
Illustration 9:
If a=limx→0x41+1+x4−2 and b=limx→02−1+cosxsin2x, then the value of ab3 is :
(A) 36
(B) 32
(C) 25
(D) 30
Applying limit a=421b=limx→02−1+cosxsin2x=limx→02−(1+cosx)(1−cos2x)(2+1+cosx)b=limx→0(1+cosx)(2+1+cosx)
Applying limits b=2(2+2)=42
Now, ab3=421×(42)3=32
(c) Limit when x→∞ :
(i) Divide by greatest power of x in numerator and denominator.
(ii) Put x=1/y and apply y→0
Illustration 10:
Evaluate: limx→∞3x2+2x−5x2+x+1
Solution:
limx→∞3x2+2x−5x2+x+1,(∞∞ form )
Put x=y1
Limit =limy→03+2y−5y21+y+y2=31
Illustration 11:
If limx→∞(x2+1x3+1−(ax+b))=2, then
(A) a=1,b=1
(B) a=1,b=2
(C) a=1,b=−2
(D) none of these
If limn→∞(n2−n−1+nα+β)=0 then 8(α+β) is equal to :
(A) 4
(B) -8
(C) -4
(D) 8
Ans. (C)
Solution:
limn→∞n(1−n2n+1)21+αn+β=0limn→∞{{1−21(n2n+1)+2!(21)(−21)(n2n+1)2+….}+αn+β=0limn→∞n−21+n1+….+nα+β=0α=−1,β=218(α+β)=−4
(d) Squeeze Play Theorem (Sandwich Theorem):
Statement: If f(x)≤g(x)≤h(x);∀x in the neighbourhood at x=a and
limx→af(x)=ℓ=limx→ah(x) then, limx→ag(x)=ℓ
Ex. 1limx→0x2sinx1=0,
∵sin(x1) lies between −1&1⇒−x2≤x2sinx1≤x2⇒limx→0x2sinx1=0 as limx→0(−x2)=limx→0x2=0
Ex. 2limx→0xsinx1=0
∵sin(x1) lies between −11⇒−x≤xsinx1≤x⇒limx→0xsinx1=0 as limx→0(−x)=limx→0x=0
Illustration 13:
Evaluate: limn→∞n2[x]+[2x]+[3x]+…..[nx] (Where [.] denotes the greatest integer function.)
Solution:
We know that x−1<[x]≤x⇒x+2x+….nx−n<∑r=1n[rx]≤x+2x+………+nx⇒2xn(n+1)−n<∑r=1n[rx]≤2x.n(n+1)⇒2x(1+n1)−n1<n21∑r=1n[rx]≤2x(1+n1)
Now, limn→∞2x(1+n1)=2x and limn→∞2x(1+n1)−n1=2x
Thus, limn→∞n2[x]+[2x]+…….+[nx]=2x
Illustration 14:
limn→∞(1+n21+21+………+n1)n is equal to :
(A) 21
(B) 0
(C) e1
(D) 1
Ans. (D)
Solution:
Given limit is of 1∞ form
So, l=exp(limn→∞n1+21+31+………+n1)
Now,
0≤1+21+31+….+n1≤1+21+31+….+n1
So, l=exp(0) (from sandwich theorem)
= 1
Illustration 15:
Let f:→R→(0,∞) be strictly increasing function such that limx→∞f(x)f(7x)=1. Then, the value of limx→∞[f(x)f(5x)−1] is equal to
(A) 4
(B) 0
(C) 7/5
(D) 1
Ans. (B)
Solution:
f:R→(0,∞)limx→∞f(x)f(7x)=1∵f is increasing
∴f(x)<f(5x)<f(7x)∵f(x)f(x)<f(x)f(5x)<f(x)f(7x)1<limx→∞f(x)f(5x)<1∴[f(x)f(5x)−1]⇒1−1=0
6.0Limit of Trigonometric Functions:
limx→0xsinx=1=limx→0xtanx=limx→0xtan−1x=limx→0xsin−1x [where x is measured in radians]
If limx→af(x)=0, then limx→af(x)sinf(x)=1, e.g., limx→1(lnx)sin(lnx)=1
As n→∞,n1→0 and na also tends to zero
sinna should be written as nasinna so that it looks like limθ→0θsinθ
The given limit =limn→∞(nasinna)(tann+1bn+1b)⋅n⋅ba(n+1)=limn→∞(nasinna)(tann+1bn+1b)⋅ba(1+n1)=1×1×ba×1=ba
7.0Illustration 19:
limx→0sin2xcot2(2x)xcot(4x) is equal to :-
(A) 2
(B) 0
(C) 4
(D) 1
If α is the positive root of the equation, p(x)=x2−x−2=0, then limx→α+x+α−41−cos(p(x)) is equal to
(A) 23
(B) 23
(C) 21
(D) 21
Ans. (A)
Solution:
x2−x−2=0
roots are 2&−1⇒limx→2+(x−2)1−cos(x2−x−2)=limx→2+(x−2)2sin22(x2−x−2)=limx→2+(x−2)2sin(2(x−2)(x+1))=23
Illustration 24:
If α>β>0 are the roots of the equation ax2+bx+1=0, and limx→α1(2(1−αx)21−cos(x2+bx+a))21=k1(β1−α1), then k is equal to
(A) 2β
(B) 2α
(C) α
(D) β
Ans. (B)
Solution:
α,β are roots of ax2+bx+1=0α1,β1 are roots of x2+bx+a=0,
(by transformation)
x2+bx+a=(x−α1)(x−β1)limx→α1[2(1−αx)21−cos(x−α1)(x−β1)]21=L( By using limθ→0θ21−cosθ=21 )
⇒[4α2(α1−β1)2]21=L⇒2αβ1−α1=L
Comparing k=2α
8.0Limit of Exponential Functions:
(a) limx→0xax−1=ℓ n a(a>0) In particular limx→0xex−1=1.
In general, if limx→af(x)=0, then limx→af(x)af(x)−1=ℓ n a,a>0
Illustration 25:
Evaluate: limx→0tanx−xetanx−ex
Solution:
limx→0tanx−xetanx−ex=limx→0tanx−xex×e(tanx−x)−ex=limx→0tanx−xex(etanx−x−1)=limx→0y→0yex(ey−1) where y=tanx−x and limy→0yey−1=1=e0×1[ as x→0,tanx−x→0]=1×1=1
(b) ( i) limx→0(1+x)1/x=e=limx→∞(1+x1)x (Note: The base and exponent depend on the same variable.) In general, if limx→af(x)=0, then limx→a(1+f(x))1/f(x)=e
(ii) limx→0xln(1+x)=1
(iii) If limx→af(x)=1 and limx→aϕ(x)=∞, then; limx→a[f(x)]ϕ(x)=ek where k=limx→aϕ(x)[f(x)−1]
Illustration 26:
limx→01+x2+x4−1x(e(1+x2+x4−1)/x−1)
(A) does not exist.
(B) is equal to e.
(C) is equal to 0 .
(D) is equal to 1 .
Ans. (D)
Solution:
limx→01+x2+x4−1x(e(1+x2+x4−1)/x−1)∵limx→0x1+x2+x4−1 (from)
limx→0x(1+x2+x4+1(1+x2+x4)−1limx→0(1+x2+x4+1)x(1+x2)=0
So limx→01+x2+x4−1xe(x1+x2+x4−1)−1(00 from )limx→0(x1+x2+x4−1)ex1+x2+x4−1−1=1
Expansion of function like binomial expansion, exponential & logarithmic expansion, expansion of sinx,cosx,tanxshould be remembered by heart which are given below :
(a) ax=1+1!xℓna+2!x2ℓn2a+3!x3ℓn3a+…,x∈R,a>0,a=1
(b) ex=1+1!x+2!x2+3!x3+…,x∈R
(c) ln(1+x)=x−2x2+3x3−4x4+… for −1<x≤1
(d) sinx=x−3!x3+5!x5−7!x7+…,x∈R
(e) cosx=1−2!x2+4!x4−6!x6+…,x∈R
(f) tanx=x+3x3+152x5+…,−2π<x<2π
(g) tan−1x=x−3x3+5x5−7x7+…,x∈(−1,1)
(h) sin−1x=x+3!12x3+5!12⋅32x5+7!12⋅32⋅52x7+…,x∈(−1,1)
(i) sec−1x=1+2!x2+4!5x4+6!61x6+…,x∈(−∞,−1)∪(1,∞)
(j) (1+x)n=1+nx+2!n(n−1)x2+…,n∈R,x∈(−1,1)
If limx→03tan2x3+αsinx+βcosx+loge(1−x)=31, then 2α−β is equal to:
(A) 2
(B) 7
(C) 5
(D) 1
Ans. (C)
Solution:
limx→03tan2x3+αsinx+βcosx+loge(1−x)=31⇒limx→03tan2x3+α[x−3!x3+…]+β[1−2!x2+4!x4…]+(−x−2x2−3x3…)=31⇒limx→03x2(3+β)+(α−1)x+(−21−2β)x2+…×tan2xx2=31⇒β+3=0,α−1=0 and 3−21−2β=31⇒β=−3,α=1⇒2α−β=2+3=5
Illustration 40:
Evaluate limx→0sinxπ.
Solution:
Again, the function f(x)=sin(π/x) is undefined at 0 . Evaluating the function for some small values of x, we get f(1)=sinπ=0,f(21)=sin2π=0,
f(0.1)=sin10π=0,f(0.01)=sin100π=0.
Based on this information, we might be tempted to guess that limx→0sinxπ=0 but this time our guess is wrong. Note that although f(1/n)=sinnπ=0 for any integer n, it is also true that f(x)=1 for infinitely many values of x that approach 0 . [In fact, sin(π/x)=1 when xπ=2π+2nπ and solving for x, we get x=2/(4n+1)]. The graph of f is given in following figure
The dashed line indicates that the values of sin(π/x) oscillate between 1 and -1 infinitely often as x approaches 0 . Since the values of f(x) do not approach a fixed number as x approaches 0 ,
⇒limx→0sinxπ does not exist.
Illustration 41:
limx→0{x5sinx−x+6x3}=
(A) 1/120
(B) −1/120
(C) 1/20
(D) None of these
Ans. (A)
Solution:
Expand sinx and then solve.
sinx=x−3!x3+5!x5−7!x7+…..limx→0x5x−6x3+120x5−…..x+6x3=1201
Illustration 42:
Let f:(−∞,∞)−{0}→R be a differentiable function such that f′(1)=lima→∞a2f(a1).
Then lima→∞2a(a+1)tan−1(a1)+a2−2logea is equal to
(A) 23+4π
(B) 83+4π
(C) 25+8π
(D) 43+8π
The value of limx→02(x21−cosxcos2x3cos3x…..10cos10x) is -
Ans. (55)
Solution:
limx→02(x21−(1−2!x2)(1−2!4x2)(1−2!9x2)…..(1−2!100x2))
By expansion
limx→0x22(1−(1−2x2))(1−21⋅24x2)(1−31⋅29x2)⋯…(1−101⋅2100x2)limx→02(x21−(1−2x2)(1−22x2)(1−23x2)⋯(1−210x2))limx→0x22(1−1+x2(21+22+23+…..+210))2(21+22+23+…..+210)1+2+……+10=210×11=55
Illustration 44:
If α,β are the distinct roots of x2+bx+c=0, then limx→β(x−β)2e2(x2+bx+c)−1−2(x2+bx+c) is equal to:
(A) b2+4c
(B) 2(b2+4c)
(C) 2(b2−4c)
(D) b2−4c