• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE MAIN 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
    • ALLEN e-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
NCERT Solutions
Class 7
Maths
Chapter 10 Algebraic Expressions

NCERT Solutions Class 7 Maths Chapter 10 Algebraic Expressions

NCERT Solutions for Class 7 Maths Chapter 10: Algebraic Expressions is a valuable resource for students. It helps them master algebraic concepts, develop problem-solving skills, and build a strong foundation for future mathematical studies.

NCERT Solutions for Class 7 Maths Algebraic expressions are incredibly helpful for students in building a strong foundation, mastering algebraic operations, and enhancing problem-solving skills. NCERT Solutions offers a wide range of practice problems with varying difficulty levels, allowing students to apply their understanding and develop problem-solving skills.

1.0Download Class 7 Maths Chapter 10 NCERT Solutions PDF Online

NCERT Solutions for Class 7 Maths Chapter 10: Algebraic Expressions

2.0Key Concepts in Class 7 Maths Chapter 10: Algebraic Expressions

  1. What is an Algebraic Expression?

A combination of variables (letters representing unknown quantities), constants (fixed numbers), and mathematical operations (addition, subtraction, multiplication, division).

Examples:

  • 3x + 5
  • 2a - b
  • 4x²y
  1. Terms of an Algebraic Expression:

Parts of an expression are separated by '+' or '-' signs.

Example: In 3x + 5y - 2, the terms are 3x, 5y, and -2.

  1. Coefficients:

The numerical factor of a term.

Example: In 5x², the coefficient of x² is 5.

  1. Variables:

Letters that represent unknown quantities.

Example: x, y, a, b in the above expressions.

  1. Constants:

Numbers that have a fixed value.

Example: 3, 5, -2 in the above expressions.

  1. Like and Unlike Terms:

Like Terms: Terms have the same variables and the same exponents.

Example: 3x and 7x, 2y² and -5y²

Unlike Terms: Terms have different variables or different exponents.

Example: 3x and 5y, 2x² and 3x

  1. Addition and Subtraction of Algebraic Expressions:

Rule: Only like terms can be added or subtracted.

Example:

3x + 5x = 8x

7y² - 2y² = 5y²

  1. Multiplication of Algebraic Expressions:

Use the distributive law: a(b + c) = ab + ac

Multiply monomials, binomials, and polynomials using appropriate rules.

  1. Division of Algebraic Expressions:

Divide monomials by monomials using the laws of exponents.

Algebraic Identities:

  • Formulas that hold true for all values of the variables involved.
  • Some common identities:
    • (a + b)² = a² + 2ab + b²
    • (a - b)² = a² - 2ab + b²
    • (a + b)(a - b) = a² - b²

3.0NCERT Questions with Solutions for Class 7 Maths Chapter 10 - Detailed Solutions

Exercise: 10.1

  • Get the algebraic expressions in the following cases using variables, constants and arithmetic operations. (i) Subtraction of z from y. (ii) One-half of the sum of numbers x and y. (iii) The number z multiplied by itself. (iv) One-fourth of the product of numbers p and q. (v) Numbers x and y both squared and added. (vi) Number 5 added to three times the product of numbers m and n (vii) Product of numbers y and z subtracted from 10. (viii)Sum of numbers a and b subtracted from their product. Sol. (i) y−z (ii) 2x+y​ (iii) z2 (iv) 4pq​ (v) x2+y2 (vi) 3mn+5 (vii) 10−yz (viii) ab−(a+b)
  • (i) Identify the terms and their factors in the following expressions. Show the terms and factors by tree diagrams. (a) x−3 (b) 1+x+x2 (c) y−y3 (d) 5xy2+7x2y (e) −ab+2b2−3a2 (ii) Identify terms and factors in the expressions given below : (a) −4x+5 (b) −4x+5y (c) 5y+3y2 (d) xy+2x2y2 (e) pq+q (f) 1.2ab−2.4 b+3.6a (g) 43​x+41​ (h) 0.1p2+0.2q2 Sol.(i) (a) x−3 Expression Terms

Expression Terms x-3

  • Factors (b) 1+x+x2 Expression Terms

Factors (b) 1+x+x square Expression Terms

  • (c) y−y3 Expression Terms Factors
    (d) 5xy2+7x2y Expression Terms Factors
    (e) −ab+2b2−3a2 Expression Terms Factors
    (ii) (a) −4x+5 Terms: −4x,5 Factors: −4,x;5 (b) −4x+5y Terms : −4x,5y Factors:-4, x ; 5, y (c) 5y+3y2 Terms:5y, 3y 2 Factors: 5, y; 3, y, y (d) xy+2x2y2 Terms: xy,2x2y2 Factors: x,y;2,x,x,y,y (e) pq+q Terms : pq, q Factors: p, q; q (f) 1.2ab−2.4 b+3.6a Terms : 1.2ab, −2.4 b,3.6a Factors : 1.2, a, b;-2.4, b; 3.6, a (g) 43​x+41​ Terms : 43​x,41​ Factors: 43​,x;41​ (h) 0.1p2+0.2q2 Terms: 0.1p2,0.2q2 Factors: 0.1, p, p; 0.2, q, q
  • Identify the numerical coefficients of terms (other than constants) in the following expressions. (i) 5−3t2 (ii) 1+t+t2+t3 (iii) x+2xy+3y (iv) 100m+1000n (v) −p2q2+7pq (vi) 1.2a+0.8 b (vii) 3.14r2 (viii) 2(ℓ+b) (ix) 0.1y+0.01y2 Sol.

Identify the numerical coefficients of terms (other than constants) in the following expressions

  • (a) Identify terms which contain x and give the coefficient of x. (i) y2x+y (ii) 13y2−8yx (iii) x+y+2 (iv) 5+z+zx (v) 1+x+xy (vi) 12xy2+25 (vii) 7x+xy2 (b) Identify terms which contain y2 and give the coefficient of y2. (i) 8−xy2 (ii) 5y2+7x (iii) 2x2y−15xy2+7y2 Sol. (a)

 coefficient of 8-xy square

  • (b)

coefficient of 5y square + 7x

  • Classify into monomials, binomials and trinomials. (i) 4y−7z (ii) y2 (iii) x+y−xy (iv) 100 (v) ab−a−b (vi) 5−3t (vii) 4p2q−4p2 (viii) 7 mn (ix) z2−3z+8 (x) a2+b2 (xi) z2+z (xii) 1+x+x2 Sol.
S.No.ExpressionType of polynomial
(i)4y−7zBinomial
(ii)y2Monomial
(iii)x+y−xyTrinomial
(iv)100Monomial
(v)ab−a−bTrinomial
(vi)5−3tBinomial
(vii)4p2q−4pq2Binomial
(viii)7 mnMonomial
(ix)z2−3z+8Trinomial
(x)a2+b2Binomial
(xi)z2+zBinomial
(xii)1+x+x2Trinomial
  • State whether a given pair of terms is of like or unlike terms. (i) 1,100 (ii) −7x,25​x (iii) −29x,−29y (iv) 14xy,42yx (v) 4 m2p,4mp2 (vi) 12xz,12x2z2 Sol.
S.No.Pair of termsLike / Unlike terms
(i)1,100Like terms
(ii)−7x,25​xLike terms
(iii)−29x,−29yUnlike terms
(iv)14xy,42yxLike terms
(v)4 m2p,4mp2Unlike terms
(vi)12xz,12x2z2Unlike terms
  • Identify like terms in the following : (a) −xy2,−4yx2,8x2,2xy2,7y,−11x2, −100x,−11yx,20x2y,−6x2,y,2xy,3x (b) 10pq,7p,8q,−p2q2,−7qp,−100q,−23, 12q2p2,−5p2,41,2405p,78qp,13p2q, qp 2,701p2 Sol. (a) Like terms are: (i) −xy2,2xy2 (ii) −4yx2,20x2y (iii) 8x2,−11x2,−6x2 (iv) 7y,y (v) −100x,3x (vi) - 11yx,2xy (b) Like terms are: (i) 10pq,−7pq,78pq (ii) 7p,2405p (iii) 8q,−100q (iv) −p2q2,12p2q2 (v) −23,41 (vi) −5p2,701p2 (vii) 13p2q,qp2

Exercise: 10.2

  • If m=2, find the value of (i) m−2 (ii) 3m−5 (iii) 9−5m (iv) 3m2−2m−7 (v) 25m​−4 Sol. (i) m−2=2−2=0[ Putting m=2] (ii) 3 m−5=3×2−5 [Putting m=2 ] =6−5=1 (iii) 9−5 m=9−5×2 [Putting m=2 ] =9−10=−1 (iv) 3m2−2m−7 [Putting m=2] =3(2)2−2(2)−7 =3×4−2×2−7=12−4−7 =12−11=1 (v) 25 m​−4=25×2​−4 [Putting m=2 ] =5−4=1
  • If p=−2, find the value of : (i) 4p+7 (ii) −3p2+4p+7 (iii) −2p3−3p2+4p+7 Sol. (i) 4p+7=4(−2)+7[ Putting p=−2] =−8+7=−1 (ii) −3p2+4p+7[ Putting p=−2] =−3(−2)2+4(−2)+7 =−3×4−8+7=−12−8+7 =−20+7=−13 (iii) −2p3−3p2+4p+7[ Putting p=−2] =−2(−2)3−3(−2)2+4(−2)+7 =−2×(−8)−3×4−8+7=16−12−8+7 =−20+23=3
  • Find the value of the following expressions, when x=−1 : (i) 2x−7 (ii) −x+2 (iii) x2+2x+1 (iv) 2x2−x−2 Sol. (i) 2x−7=2(−1)−7 [Putting p=−1 ] =−2−7=−9 (ii) −x+2=−(−1)+2 [Putting p=−1] =1+2=3 (iii) x2+2x+1 [Putting p=−1] =(−1)2+2(−1)+1 =1−2+1=2−2=0 (iv) 2x2−x−2 [Putting p=−1] =2(−1)2−(−1)−2 =2×1+1−2=2+1−2 =3−2=1
  • If a=2,b=−2, find the value of: (i) a2+b2 (ii) a2+b2+ab (iii) a2−b2 Sol. (i) a2+b2=(2)2+(−2)2[ Putting a=2, b=−2] =4+4 =8 (ii) a2+ab+b2 =(2)2+(2)(−2)+(−2)2 [Putting a =2, b=−2 ] =4−4+4 =4 (iii) a2−b2=(2)2−(−2)2[ Putting a=2, b=2] =4−4 =0
  • When a=0, b=−1, find the value of the given expressions : (i) 2a+2b (ii) 2a2+b2+1 (iii) 2a2b+2ab2+ab (iv) a2+ab+2 Sol. (i) 2a+2 b=2(0)+2(−1) [Putting a=0,b=−1 ] =0−2=−2 (ii) 2a2+b2+1 =2(0)2+(−1)2+1 [Putting a=0,b=1] =2×0+1+1=0+2=2 (iii) 2a2 b+2ab2+ab[ Putting a=0, b=−1] =2(0)2(−1)+2(0)(−1)2+(0)(−1) =0+0+0=0 (iv) a2+ab+2 =(0)2+(0)(−1)+2[ Puttinga =0,b=−1] =0+0+2=2
  • Simplify the expression and find the value if x is equal to 2 (i) x+7+4(x−5) (ii) 3(x+2)+5x−7 (iii) 6x+5(x−2) (iv) 4(2x−1)+3x+11 Sol. (i) x+7+4(x−5)=x+7+4x−20 =x+4x+7−20=5x−13 =5×2−13 [Putting x=2 ] =10−13=−3 (ii) 3(x+2)+5x−7=3x+6+5x−7 =3x+5x+6−7=8x−1 =8×2−1[ Putting x=2] =16−1=15 (iii) 6x+5(x−2)=6x+5x−10 =11x−10 =11×2−10[ Putting x=2] =22−10=12 (iv) 4(2x−1)+3x+11=8x−4+3x+11 =8x+3x−4+11=11x+7 =11×2+7 [Putting x=2 ] =22+7=29
  • Simplify these expressions and find their values if x=3,a=−1, b=−2. (i) 3x−5−x+9 (ii) 2−8x+4x+4 (iii) 3a+5−8a+1 (iv) 10−3b−4−5b (v) 2a−2b−4−5+a Sol. (i) 3x−5−x+9=3x−x−5+9=2x+4 =2×3+4 [Putting x=3 ] =6+4=10 (ii) 2−8x+4x+4=−8x+4x+2+4 =−4x+6 [Putting x=3 ] =−4×3+6=−12+6=−6 (iii) 3a+5−8a+1=3a−8a+5+1=−5a+6 =−5(−1)+6[ Putting a=−1] =5+6=11 (iv) 10−3b−4−5b=−3b−5b+10−4 =−8b+6=−8(−2)+6 [Putting b=−2 ] =16+6=22 (v) 2a−2 b−4−5+a=2a+a−2 b−4−5 =3a−2b−9 [Putting a=−1,b=−2] =3(−1)−2(−2)−9=−3+4−9=−8
  • (i) If z=10, find the value of z3−3(z−10). (ii) If p=−10, find the value of p2−2p−100 Sol. (i) z3−3(z−10) =(10)3−3(10−10) [Putting z=10 ] =1000−3×0=1000−0=1000 (ii) p2−2p−100 [Putting p=−10] =(−10)2−2(−10)−100 =100+20−100=20
  • What should be the value of a if the value of 2x2+x− a equals to 5 , when x=0 ? Sol. Given: 2x2+x−a=5 ⇒2(0)2+0−a=5[ Putting x=0] ⇒0+0−a=5⇒a=−5 Hence, the value of a is -5 .
  • Simplify the expression and find its value when a=5 and b=−3.2(a2+ab)+3−ab Sol. Given: 2(a2+ab)+3−ab ⇒2a2+2ab+3−ab ⇒2a2+2ab−ab+3 ⇒2a2+ab+3 ⇒2(5)2+(5)(−3)+3[ Putting a=5,b=−3] ⇒2×25−15+3 ⇒50−15+3⇒38

Answer Key

Multiple choice questions

Question123456789101112131415
Answer322242233142234
Question1617181920
Answer24441

True or False

  • False
  • False
  • True
  • False
  • False

Fill in the blanks

  • monomial
  • numerical
  • 3−2​x2
  • -4 x
  • −2(a+b+c)
  • 3x−2
  • unlike
  • subtracted
  • 5
  • 1
  • −4,x,x,y
  • x3−y3
  • 25 kg
  • 5, 0
  • 21​pq

Exercise-02

Very short answer type questions

  • Write down the numerical as well as the literal coefficient of each of the following monomials: (i) −10x2y (ii) 136​a2bc (iii) −95​ abc (iv) -pq (v) −9z5xy​ (vi) −8x2y2z2
  • Group the like terms together. (i) 6a,5 b,−7a,−3 b (ii) 11x,−3y,6y,y,8x,−6x and 5 x (iii) 6m,8mn,−16mn,−10m,−8m2,15m2 and 14 mn (iv) 14x2y,2xy2,6xy,−6yx,5yx2 and 14y2x
  • Identify the type of algebraic expression and state the degree of each. (i) 3−8x (ii) x2+4y2 (iii) 8x2y6+x5 (iv) −6a3+5a3b−ab3+9b4 (v) 6a3−2a2b2+18a4−16a3b4−22a6+16b8 (vi) 18a4b3−6a3b6+20a7−16b8+20a4b4
  • Identify polynomials from the given algebraic expressions. (i) 94​x2−94​x2+4 (ii) x2​+x23​−4x2+3x+2 (iii) 3a3+4a2b+8b3 (iv) x2−x21​+2
  • Add the following: (i) −3p+6q,3p−3q (ii) 8p−6q,3p−4q,12q−12p (iii) 6x−4y−2z,3y−2x+z,4z−x−2y (iv) 15p2+10pq−6q2,−8pq+10p2−9q2
  • Subtract the first expression from the second. (i) 16a, 18a (ii) −12x,10 (iii) −4bc,12

Short answer type questions

  • Add the following: (i) 5a2+8a−4,3a2−4a+11,−4a2−3a+6 (ii) p2+q2+2pq,3p2+3r2+6pr,9r2−4p2+6pr (iii) a2b+ab2−abc−b2c,5a2b−6ab2−3abc−2cb2 (iv) 52​x−23​y+2z,3x​+4y​−2z​ and 5−4x​+3y​−23z​ (v) 35x2​−27x​+11,27x2​+35x​−6 and 37x2​−34x​−2 (vi) 2−52​x3+3x2,x3−4x2​+5 and 52x3​+ 43x2​−10
  • Subtract the first expression from the second. (i) 8p2−6p2q+8q2,12p2−16p2q+8pq2+9q2 (ii) 9p3+4p2+6p−4,12p3−12 (iii) 6a4−2a2b2+2b4,8a4−6a2b2+8a3b− 8a2b−b4 (iv) 56x2​−32x​+10,38x2​−23x​+8 (v) 25x2​−32y2​+6xy​,23x2​−43y2​+6xy​
  • Subtract: (i) 9a2+19b+21 from 12a2+26b+32. (ii) Add 8p+3q+9 to the difference of 16p+5q+10 and 6p−3q−1. (iii) Subtract the sum of 2a+3b+7 and 9a−3b−5 from the sum of 7a+3b+9 and 6a+5b+1 (iv) What must be added to 3x3+5x−x2−5 to get 2x2−2x−2x3+2 ? (v) What must be subtracted from 6p3+ 6p−p2−7 to get −6p2+8−2p ?

Long answer type questions

  • Draw a tree diagram for each of the following expressions. (i) 2a+4 b (ii) −7a2+15ab (iii) 4x2y3+6x
  • Find the product: (i) 3x(x2−2x) (ii) 2xy(x2−y2) (iii) −3xy(x2y−2xy2) (iv) 5xy​(−2x−5y) (v) (4abc+3ab)×(−4b2c) (vi) (2a−6b)(a+4b) (vii) (2x−3y)(4x2+6xy+9y2) (viii) (a−3b+5)(2a+2b−6) (ix) (x3−x2−x−5)(x3+x2+x+5) (x) (a3+a2+a+2)(a3−a2−a−2) (xi) (73x​+32y​)(73x​−32y​) (xii) (2x​−53y​)(2x+5y)
  • Find the value of the following expressions if a=1, b=−1. (i) a2−b2 (ii) a2+3ab+b2 (iii) 3a4−2b3−a
  • By how much is sum of a4−6a2b2+b4 and −2a4+5a2b2+3b4 greater than −a4−a2b2−4b4 ?
  • From the sum of 4+3x and 5−4x+2x2, subtract the sum of 3x2−5x and −x2+2x+5 and write the degree of the difference obtained.
  • If 4a−3=13, then find the value of 10a2−5a+6.
  • If ∥∥∥+≡+represents 4x2+3y2+z, then write the algebraic expression for ≡+□□□+∣.
  • Fill in the blanks to make the given addition sentence true: 6ab3+…..+2b2c+8abc−14b3a=15b2c +....+20abc−12abc
  • What values of a and b make the given statement true? (ay2+3xy−9x2)−(−4y2+8xy+bx2) =10y2−5xy−10x2
  • If 2x−2=4 and 0.05y=0.15, find the value of y2−x2.
  • Find the area of a rectangle whose length and breadth is (x+2y)cm and (3x−2y)cm respectively.

Answer Key

Very short answer type questions

  • (i) −10,x2y (ii) 136​,a2bc (iii) 9−5​,abc (iv) −1,pq (v) 9−5​,zxy​ (vi) −8,x2y2z2
  • (i) (6a,−7a),(5b,−3b) (ii) (11x,8x,−6x,5x),(−3y,6y,y) (iii) (6m,−10m),(8mn,−16mn,14mn),(−8m2,15m2) (iv) (14x2y,5yx2),(6xy,−6yx),(2xy2,14y2x)

(i) Binomial, 1 (ii) Binomial, 2 (iii) Binomial, 8 (iv) Quadrinomial, 4 (v) Multinomial, 8 (vi) Multinomial, 9

  • (i) and (iii) are polynomials.

(i) 3 q (ii) 2q−p (iii) 3x−3y+3z (iv) 25p2+2pq−15q2 (ii) 10+12x (iii) 12+4bc

  • (i) 2a

Short answer type questions

  • (i) 4a2+a+13 (ii) q2+2pq+12r2+12pr (iii) 6a2b−5ab2−4abc−3b2c (iv) 15−x​−1211y​ (v) 215x2​−619x​+3 (vi) (x3+27x2​−3)
  • (i) 4p2−10p2q+8pq2+q2 (ii) 3p3−4p2−6p−8 (iii) 2a4−4a2b2+8a3b−8a2b−3b4 (iv) 1522​x2−65​x−2 (v) −x2−121​y2

(i) 3a2+7b+11 (ii) 18p+11q+20 (iii) 2a+8 b+8 (iv) −5x3−7x+3x2+7 (v) 6p3+8p+5p2−15

Long answer type questions

terms and fators

  • (i)

Terms and factors 2a+4b

  • (iii) Terms Factors

terms and factors 4x square y cube+6x

  • (ii)
  • (i) 3x3−6x2 (ii) 2x3y−2xy3 (iii) −3x3y2+6x2y3 (iv) 5−2​x2y−xy2 (v) −16ab3c2−12ab3c (vi) 2a2+2ab−24 b2 (vii) 8x3−27y3 (viii) 2a2−6b2−4ab+4a+28b−30 (ix) x6−x4−2x3−11x2−10x−25 (x) a6−a4−2a3−5a2−4a−4 (xi) 499​x2−94​y2 (xii) x2−3y2+1013​xy
  • (i) 0 (ii) -1 (iii) 4
  • +8b4
  • 4+2x, degree =1
  • 146
  • 4y2+3z+x2
  • 13b2c,−8ab3
  • a=6,b=1
  • 0
  • (3x2+4xy−4y2)cm2

4.0Benefits of NCERT Solutions for Class 7 Maths Chapter 10

  1. The chapter introduces core algebraic concepts like variables, constants, terms, coefficients, and expressions. These are building blocks for higher-level algebra and other branches of mathematics.
  2. NCERT Solutions breaks down these concepts into easy-to-understand explanations, ensuring a solid foundation for students.
  3. The solutions guide students through adding and subtracting algebraic expressions, including combining like terms and simplifying expressions.
  4. Students learn how to multiply monomials, binomials, and polynomials and divide monomials by monomials.
  5. Important algebraic identities are introduced and explained, providing valuable shortcuts for solving algebraic problems.
  6. Algebraic expressions are used in various real-world situations. NCERT Solutions can help students understand how algebraic concepts are applied in everyday life, making learning more engaging.

5.0Why are NCERT Solutions for Class 7 Maths Chapter 10 important?

  • Foundation for Higher Mathematics: These concepts are fundamental to understanding more advanced algebraic topics like equations, inequalities, and functions.
  • Problem-Solving: They are essential for solving various mathematical problems in algebra and other areas of mathematics.
  • Real-World Applications: Algebraic expressions are used to model and solve real-world problems in various fields, such as physics, engineering, and economics.

NCERT Solutions for Class 7 Maths Other Chapters:-

Chapter 1: Integers

Chapter 2: Fractions and Decimals

Chapter 3: Data Handling

Chapter 4: Simple Equations

Chapter 5: Lines and Angles

Chapter 6: The Triangle and its Properties

Chapter 7: Comparing Quantities

Chapter 8: Rational Numbers

Chapter 9: Perimeter and Area

Chapter 10: Algebraic Expressions

Chapter 11: Exponents and Powers

Chapter 12: Symmetry

Chapter 13: Visualising Solid Shapes


CBSE Notes for Class 7 Maths - All Chapters:-

Class 7 Maths Chapter 1 - Integers Notes

Class 7 Maths Chapter 2 - Fractions and Decimals Notes

Class 7 Maths Chapter 3 - Data Handling Notes

Class 7 Maths Chapter 4 - Simple Equations Notes

Class 7 Maths Chapter 5 - Lines And Angles Notes

Class 7 Maths Chapter 6 - The Triangles and its PropertiesNotes

Class 7 Maths Chapter 7 - Comparing Quantities Notes

Class 7 Maths Chapter 8 - Rational Numbers Notes

Class 7 Maths Chapter 9 - Perimeter And Area Notes

Class 7 Maths Chapter 10 - Algebraic Expressions Notes

Class 7 Maths Chapter 11 - Exponents And Powers Notes

Class 7 Maths Chapter 12 - Symmetry Notes

Class 7 Maths Chapter 13 - Visualising Solid Shapes Notes

Frequently Asked Questions

An algebraic expression is a combination of variables, constants and mathematical operations. For examples: 10x + 5, 2a - c

Like Terms: Terms with the same variables and exponents (e.g., 3x and 7x). Unlike Terms: Terms with different variables or exponents (e.g., 3x and 5y).

Only like terms can be added or subtracted.

NCERT Solutions for Class 7 Maths Chapter 10 is helpful for Clear explanations, solving practice problems, building a strong foundation and exam preparation.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • JEE Advanced 2025 Answer Key
    • JEE Advanced Rank Predictor

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO