• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE 2025
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
    • ALLEN e-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE MathsJEE Physics
Home
JEE Chemistry
Superposition of Waves

Superposition of Waves

The superposition of waves is a fundamental idea in physics that explains what happens when two or more waves overlap. According to the superposition principle, the total effect at any point is simply the sum of the individual wave displacements. Depending on how the waves line up—whether they’re in phase or out of phase—this can result in constructive interference (where the waves add up) or destructive interference (where they cancel each other out). This principle applies to all types of waves, including mechanical waves like sound and electromagnetic waves like light. It's key to understanding many wave phenomena, such as interference and diffraction.

1.0Superposition Principle

  • When two or more waves overlap at a point in space, the resultant displacement at that point is equal to the algebraic sum of the displacements due to each individual wave.

Superposition Principle

y=y1​±y2​±y3​+⋯

2.0Types of Superposition

1.Constructive Superposition

  • Constructive superposition occurs when two waves meet in phase (i.e., their crests and troughs align), resulting in a larger amplitude. The displacements of the individual waves add up, producing a wave with maximum intensity.

2.Destructive Superposition

  • Destructive superposition happens when two waves meet out of phase (i.e., the crest of one wave aligns with the trough of another), causing their displacements to partially or completely cancel out, leading to a reduced or zero amplitude.

Wave Interference

Relationship between Phase Difference and Path Difference

Phase difference=wavelength2π​×path differenceϕ=λ2π​×Δx

3.0Superposition of Two Sinusoidal Waves

Superposition of Two Sinusoidal Waves

Resultant wave at P from S1​and S2​ is given asy1​=asinωty2​=bsin(ωt+ϕ)Applying principle of superposition at point P we get resultant waveY=y1​+y2​=asinωt+bsin(ωt+ϕ) =asinωt+b[sinωtcosϕ+cosωtsinϕ]  =sinωt(a+bcosϕ)+bcosωtsinϕa+bcosϕ=Rcosθ…….(2)bsinϕ=Rsinθ…….(3)Y=Rsinωtcosθ+cosωtsinθ =Rsin(ωt+θ)Resultant wave is a simple harmonic wave having amplitude R and phase differenceθ

Amplitude of Resultant Wave

Squaring and adding equations (2) and (3)(a+bcosϕ)2+b2sin2ϕ=R2cos2θ+R2sin2θ(a+bcosϕ)2+b2sin2ϕ=R2(cos2θ+sin2θ)R2=a2+b2+2abcosϕR=a2+b2+2abcosϕ​(Intensity∝(amplitude)2)⇒Ia​∝a2,Ib​∝b2IR​=KR2=K(a2+b2+2abcosϕ)IR​=Ia​+Ib​+2Ia​Ib​​cosϕ(This is the Resultant Intensity Equation)tanθ=a+bcosϕbsinϕ​

4.0Condition for Constructive and Destructive Interference

1.Constructive Interference

It occurs when the amplitude and the resultant wave is maximum.

IR​=Imax​if cosϕ=maximum=+1ϕ=0,2π,4π⇒ϕ=n(2π)where n=0,1,2,3,…Δx=2πλ​×2nπ=nλImax​=(a+b)2Imax​=(Ia​​+Ib​​)2Rmax​=(a+b)

2.Destructive Interference

It occurs when the amplitude and the resultant wave is minimum.IR​=Imin​if cosϕ=minimum=+1ϕ=0,2π,4π⇒ϕ=n(2π)where n=0,1,2,3,…Δx=2πλ​×2nπ=nλImin​=(a+b)2Imin​=(Ia​​+Ib​​)2Rmin​=(a+b)

5.0Ratio of Maximum And Minimum Intensity of Light

Imin​Imax​​=(Ia​​−Ib​​Ia​​+Ib​​​)2=(a−ba+b​)2=(ba​−1ba​+1​)2=(r−1r+1​)2(since ba​=r=Amplitude Ratio)

6.0Relation Between Intensity and Width of Source

Let wa​ and wb​be the width of narrow sources s1​ and s2​Ia​∝wa​⇒Ia​∝a2Ib​∝wb​⇒Ib​∝b2b2a2​=wb​wa​​​

Illustration-1:S1​ and S2​ are two sources of light which produce individual disturbance at point P given by E1​=3sinωt,E2​=4cosωt. Assuming E1​and E2​ to be along the same line, find the resultant after their superposition.

Solution:

E=3sinωt+4sin(ωt+2π​)A2=32+42=2(3)(4)cos2π​=52tanϕ0​=3+4cos2π​4sin2π​​=34​=53∘E=5sin(ωt+53∘)

Illustration-2:

S1​ and S2​ are two coherent sources of frequency 'f ' each.

[Given: θ1​=θ2​=0∘and vsound​=330m/s.] 

(i) So that constructive interference at 'p'

(ii) So that destructive interference at 'p'

two sources of light which produce individual disturbance at point P


Solution:

For constructive interference:kΔx=2nπλ2π​×2=2nπλ=n2​,V=λf⇒V=n2​ff=2330​×nFor destructive interference:kΔx=(2n+1)πλ2π​×2=(2n+1)πλ1​=4(2n+1)​,f=λV​f=4330×(2n+1)​

Illustration-3:Two waves are given by the equations

y1​=4sinωt andy2​=3sin(ωt+3π​) When these two waves interfere at a point, what is the approximate amplitude of the resulting wave?

Solution:

A=a12​+a22​+2a1​a2​cosϕ​A=(4)2+(3)2+2⋅4⋅3⋅cos3π​​=37​≈6 

Illustration-4:Two waves with intensities 9I 9I and 4I 4I interfere at a point. If the path difference between them is11λ 11 \lambda , what will be the resultant intensity at that point?

Solution: Path difference, Δx=2πλ​×ϕ⇒λ2π​×11λ=22π, ,i.e. At the same point, the superposition of the waves results in constructive interference.

IR​=(I1​​+I2​​)2=(9I​+4I​)2=25I

Illustration-5:In interference if Imin​Imax​​=81144​ .Determine the ratio of amplitudes of the two waves involved in the interference.

Solution:

a2​a1​​=(Imin​Imax​​​+1/Imin​Imax​​​−1)=(81144​​−181144​​+1​)=(912​−1912​+1​)=17​

Illustration-6:Two interfering waves with intensities x and y arrive at a point with a time delay of 23T​ . Determine the resultant intensity at that point.

Solution:

Time difference T.D. Δx=2πT​×ϕ⇒23T​=2πT​×ϕ⇒ϕ=3π. This is the condition of constructive interference.

So resultant intensity,

IR​=(I1​​+I2​​)2=(x​+y​)2=x+y+2xy​

Illustration-7: If n identical waves, each having intensity I0​ , interfere at a point, what will be the maximum resultant intensity in the following cases?
(1) When the waves are coherent
(2) When the waves are incoherent

Solution:

 In case of interference of two waves:I=I1​+I2​+2I1​I2​​cosϕIn case of coherent interferenceϕis unchanging with time and so I will be maximum whencosϕ=max=1(Imax​)co​=I1​+I2​+2I1​I2​​=(I1​​+I2​​)2So for n n identical waves each of intensityI0​(Imax​)co​=(I0​​+I0​​+…)2=(nI0​​)2=n2I0​In case of incoherent interference at a given point,ϕvaries randomly with time, so (cosϕ)av​=0 and hence(IR​)inco​=I1​+I2​So, in case of n identical waves(IR​)inco​=I0​+I0​+⋯=nI0​

Table of Contents


  • 1.0Superposition Principle
  • 2.0Types of Superposition
  • 2.1Relationship between Phase Difference and Path Difference
  • 3.0Superposition of Two Sinusoidal Waves
  • 4.0Condition for Constructive and Destructive Interference
  • 5.0Ratio of Maximum And Minimum Intensity of Light
  • 6.0Relation Between Intensity and Width of Source

Frequently Asked Questions

They undergo complete destructive interference, and the resultant displacement is zero at that point.

Because interference is a direct result of superposition—interference patterns arise from the addition (constructive) or cancellation (destructive) of wave displacements.

:It is the difference in the phase angles of two waves at a given point, which determines how the waves combine—constructively or destructively.

Yes, energy is conserved overall. However, it is redistributed in the interference pattern, creating regions of high and low intensity.

Noise-canceling headphones use destructive interference to cancel unwanted sounds by producing sound waves that are out of phase with ambient noise.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO