• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
  • NEW
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Carmer's Rule

Cramer’s Rule

Cramer’s Rule is a method in linear algebra used to solve systems of linear equations with the same number of equations and variables. It uses determinants of matrices to find the values of variables directly without substitution or elimination. The rule is applicable only when the coefficient matrix is square and has a non-zero determinant. Cramer’s Rule is particularly useful for solving small systems and is a foundational technique in mathematics and engineering.

1.0Cramer’s Rule Definition

In linear algebra, Cramer’s Rule is a powerful method used to solve systems of linear equations using determinants. It applies to square systems (number of equations = number of variables) and provides exact values for each variable without the need for elimination or substitution.

2.0What is Cramer’s Rule?

Cramer’s Rule is a technique that uses the determinant of matrices to solve a system of linear equations. It is applicable only when the coefficient matrix is square and has a non-zero determinant.

3.0What is the Cramer’s Rule Method?

The Cramer method involves replacing each column of the coefficient matrix with the constant matrix (RHS) and computing the determinant. Each variable is then found by:

xi​= Determinant of coefficient matrix  Determinant of matrix with column i replaced by RHS ​

4.0Cramer’s Rule Formula

For a system of equations:

​a1​x+b1​y=c1​a2​x+b2​y=c2​​

The determinant of the coefficient matrix:

D=​a1​a2​​b1​b2​​​=a1​b2​−a2​b1​ 

Replace the respective columns for each variable:

  • Dx​=​c1​c2​​b1​b2​​​,
  • Dy​=​a1​a2​​c1​c2​​​

Then,

Dx=DDx​​,y=DDy​​

This is the Cramer’s Rule formula for 2 variables.

5.0Why Use the Cramer Method?

  • It's a direct algebraic method.
  • Suitable for small systems (2 x 2 or 3 x 3).
  • No need for row operations or substitution.
  • Especially helpful in Maths and engineering problems with clear coefficient matrices.

6.0Applications of Cramer’s Rule

  • Linear algebra problems
  • Engineering circuits (KCL/KVL)
  • Economics (linear optimization)
  • Computer graphics (transformation matrices)
  • Solving simultaneous equations with exact coefficients

7.0Solved Examples on Cramer’s Rule 

Example 1: 

​2x+3y=84x−y=2​ 

Solution: 

Step 1: Find D (Determinant of coefficient matrix)

D=​24​3−1​​=(2)(−1)−(4)(3)=−2−12=−14

Step 2: Find D_x (Replace x-column with constants)

Dx​=​82​3−1​​=(8)(−1)−(2)(3)=−8−6=−14

Step 3: Find Dy​ (Replace y-column with constants)

Dy​=​24​82​​=(2)(2)−(4)(8)=4−32=−28 

Step 4: Use Cramer’s Rule

x=DDx​​=−14−14​=1,y=DDy​​=−14−28​=2

Solution: x = 1, y = 2

Example 2: Solve using Cramer’s Rule:

{2x+3y=84x−y=2​ 

Solution:

  • Coefficient matrix:

D=​24​3−1​​=(2)(−1)−(4)(3)=−2−12=−14

  • Replace 1st column with constants for Dx​:

Dx​=​82​3−1​​=(8)(−1)−(2)(3)=−8−6=−14

  • Replace 2nd column with constants for Dy​:

Dy​=​24​82​​=(2)(2)−(4)(8)=4−32=−28 

Now,

x=DDx​​=−14−14​=1,y=DDy​​=−14−28​=2

Answer: x = 1, y = 2

Example 3: Solve using Cramer’s Rule:

{x−21​y=13x+2y=5​

Solution:

  • Coefficient matrix:

D=​13​−21​2​​=(1)(2)−(3)(−21​)=2+23​=27​

  • Dx​=​15​−21​2​​=(1)(2)−(5)(−21​)=2+25​=29​Dy​=​13​15​​=(1)(5)−(3)(1)=5−3=2

x=7/29/2​=79​,y=7/22​=74​

Answer: x=79​,y=74​

Example 4: Solve the system using Cramer’s Rule:

⎩⎨⎧​x+y+z=62x−y+3z=14x+2y−z=−2​ 

Solution:

Step 1: Coefficient Matrix Determinant D

D=​121​1−12​13−1​​

Using cofactor expansion:

​D=1⋅​−12​3−1​​−1⋅​21​3−1​​+1⋅​21​−12​​=1((−1)(−1)−(3)(2))−1((2)(−1)−(3)(1))+1((2)(2)−(−1)(1))=1(1−6)−1(−2−3)+1(4+1)=1(−5)−1(−5)+1(5)=−5+5+5=5D=5​

Step 2: D_x — Replace 1st column with constants (6, 14, -2)

​Dx​=​614−2​1−12​13−1​​Dx​=6⋅​−12​3−1​​−1⋅​14−2​3−1​​+1⋅​14−2​−12​​Dx​=6((−1)(−1)−(3)(2))−(14⋅−1−3⋅−2)+(14⋅2−(−1)(−2))=6(1−6)−(−14+6)+(28−2)Dx​=6(−5)−(−8)+26Dx​=−30+8+26=4D−​x=4​

Step 3: D_y — Replace 2nd column with constants

Dy​Dy​​=​121​614−2​13−1​​=1⋅​14−2​3−1​​−6⋅​21​3−1​​+1⋅​21​14−2​​​

​Dy​=1(14⋅−1−3⋅−2)−6(2⋅−1−3⋅1)+1(2⋅−2−14⋅1)Dy​=1(−14+6)−6(−2−3)+1(−4−14)Dy​=−8+30−18=4Dy​=4​

Step 4: D_z — Replace 3rd column with constants

​Dz​=​121​1−12​614−2​​Dz​=1⋅​−12​14−2​​−1⋅​21​14−2​​+6⋅​21​−12​​Dz​=1((−1)(−2)−(14)(2))−1((2)(−2)−(14)(1))+6((2)(2)−(−1)(1))Dz​=1(2−28)−(−4−14)+6(4+1)Dz​=−26+18+30=22Dz​=22​

Final Step: Solve for x, y, z

x=DDx​​=54​,y=DDy​​=54​,z=DDz​​=522​ 

Final Answer:

x=54​,y=54​,z=522​

Example 5: Use Cramer’s Rule to check if this system has a unique solution:

{x+2y=42x+4y=8​ 

Solution:

Coefficient matrix:

D=​12​24​​=1(4)−2(2)=4−4=0

Since D = 0, Cramer’s Rule is not applicable. The system is dependent or inconsistent.

Answer: No unique solution (Cramer’s Rule fails)

Example 6: Solve using Cramer’s Rule:

{3x−4y=105x+2y=8​

Solution:

  • D=​35​−42​​=(3)(2)−(5)(−4)=6+20=26
  • Dx​=​108​−42​​=(10)(2)−(8)(−4)=20+32=52
  • Dy​=​35​108​​=(3)(8)−(5)(10)=24−50=−26

x=2652​=2,y=26−26​=−1

Answer: x = 2, y = -1

Q7: What is the Cramer formula?

Ans: xi​=DDi​​ 

Where Di​ is the determinant after replacing column ii with the constant column.

8.0Practice Questions on Cramer’s Rule

  1. Solve: 3x + 4y = 10, 5x − 2y = 8  
  2. Use Cramer’s Rule to solve: 2x + y + z = 1, x + 3y – z = 4, 3x – y + 2z = 5  
  3. Check if the following system can be solved using Cramer’s Rule:

x + 2y = 3, 2x + 4y = 6   

  1. Find the determinant of:

​142​−201​356​​

Table of Contents


  • 1.0Cramer’s Rule Definition
  • 2.0What is Cramer’s Rule?
  • 3.0What is the Cramer’s Rule Method?
  • 4.0Cramer’s Rule Formula
  • 5.0Why Use the Cramer Method?
  • 6.0Applications of Cramer’s Rule
  • 7.0Solved Examples on Cramer’s Rule 
  • 8.0Practice Questions on Cramer’s Rule

Frequently Asked Questions

It is a method to solve a square system of linear equations using determinants.

Only when the number of equations equals the number of unknowns and the determinant of the coefficient matrix is non-zero.

Cramer’s Rule uses determinants; elimination transforms the system using row operations.

No. For larger systems (like 4 x 4 or more), methods like Gaussian elimination or matrix inversion are preferred.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor
    • NEET 2025 Counselling

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO