• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE MAIN 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
    • ALLEN e-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Differentiation

Differentiation

Differentiation is a mathematical process that measures how a function changes as its input changes. In simpler terms, it calculates the rate of change of function. 

The derivative can be visualized as the slope of the tangent line to the functions graphs at the point.

Differentiation is used to calculate rates of change in various field, such as physics (velocity, acceleration…..) 

1.0Derivative By First Principle

Let y = f(x) : 

y + Δy = f(x + Δx)

∴ΔxΔy​=Δxf(x+Δx)−f(x)​(average rate of change of function)

∴dxdy​=limΔx→0​ΔxΔy​=limΔx→0​Δxf(x+Δx)−f(x)​ …..(i)

(i) denotes the instantaneous rate of change of function and gives slope of tangent at any point on curve y = f(x). Finding the value of the limit given by (i) in respect to a variety of functions is called finding the derivative by first principle/by delta method/by ab-initio method/by fundamental definition of calculus.

Note than if y = f(x) then the symbols dxdy​=Dy=f′(x)=y1​ or y’ have the same meaning.

Derivative of standard functions:

f(x)

f’(x)

xn

nxn-1

ex

ex 

ax

ax lna, a > 0

lnx

1/x

logax

(1/x) logae, a > 0, a ≠ 1

sinx

cosx

cosx

– sinx

tanx

sec2x

secx

secx tanx

cosecx

–cosec2x

constant

0

sin-1 x

1−x2​1​,−1<x<1

cos-1 x

1−x2​−1​,−1<x<1

tan-1 x

1+x21​,x∈R

sec-1 x

∣x∣x2−1​1​,∣x∣>1

cosec-1 x

∣x∣x2−1​−1​,∣x∣>1

cot-1 x

1+x2−1​,x∈R

2.0Fundamental Theorems

If f and g are derivable functions of x, then,

(a) dxd​(f±g)=dxdf​±dxdg​

(b) dxd​(cf)=cdxdf​, where c is any constant

(c) dxd​(fg)=fdxdg​+gdxdf​ known as “PRODUCT RULE”

(d) dxd​( gf​)=g2g(dxdf​)−f(dxdg​)​ where g ≠ 0 known as “QUOTIENT RULE”

(e) If y = f(u) & u = g (x) then dxdy​=dudy​⋅dxdu​ known as “CHAIN RULE”

Note : in general if y = f(u) then dxdy​=f′(u)⋅dxdu​

  1. Logarithmic differentiation:

To find the derivative of a function:

(a) which is the product of quotient of a number of functions or

(b) of the form [f(x)]g(x) where f and g are both derivable functions.

It is convenient to take the logarithm of the function first and then differentiate.

  1. Parametric differentiation:
  • If y = f(θ) and x = g(θ) where θ is a parameter, then dxdy​=dx/dθdy/dθ​=g′(θ)f′(θ)​ 
  1. Derivative of a function w.r.t. another function
  • Let y = f(x) ; z = g(x) then dzdy​=dz/dxdy/dx​=g′(x)f′(x)​
  1. Differentiation of implicit functions: φ(x, y) = 0
  • To find dxdy​ of implicit functions, we differentiate each term w.r.t. regarding y as a function of x and then collect terms with dxdy​ together on one side.
  • Also dxdy​=∂y∂ϕ​−∂x∂ϕ​​, where ∂y∂ϕ​ = partial derivative of φ(x, y) w.r.t. x taking y as a constant and ∂y∂ϕ​= partial derivative of φ(x, y) w.r.t. y taking x as a constant. (In the case of implicit functions, generally, both x and y present in answers of dy/dx)

3.0Derivative Of Inverse Function

Theorem: If the inverse functions f and g are defined by y = f(x) and x = g(y) and if f'(x) exists and f’(x) ≠ 0, then g’(y)=f′(x)1​. This result can also be written as, if dxdy​ exist and dxdy​=0, then dydx​=dxdy​1​ or dxdy​⋅dydx​=1 or dxdy​=dydx​1​[dydx​=0]

Note: (i) g’(f(x))=f′(x)1​ (ii) g′′(f(x))=(f′(x))3−f′′(x)​

Higher order Derivatives

Let a function y = f(x) be defined on an interval (a, b). If f(x) is differentiable function, then its derivative f’(x) [or (dy/dx) or y’] is called the first derivative of y w.r.t. x if f’(x) is again differentiable function on (a, b), then its derivative f”(x) [or d2y/dx2 or y”] is called second derivative of y w.r.t. x similarly, the 3rd order derivative of y w.r.t. x, if exists, is defined by dx3d3y​=dxd​(dx2 d2y​) and denoted by f”’ (x) or y”’ and so on.

Note: If x = f (θ) and y = g(θ) where ‘θ’ is a parameter then dxdy​=dx/dθdy/dθ​&dx2d2y​=dθd​(dxdy​)/dθdx​, In general dxndny​=dθd​(dxn−1dn−1y​)/dθdx​

L. Hopital’s Rule

(a) This rule is applicable for the indeterminate forms of the type 00​,∞∞​. If the function f(x) and g(x) are differentiable in certain neighbourhood of the point ‘a’, except, may be, at the point ‘a’ itself and g'(x) ≠ 0, and if

limx→a​f(x)=limx→a​g(x)=0

or limx→a​f(x)=limx→a​g(x)=∞,

then limx→a​g(x)f(x)​=limx→a​g′(x)f′(x)​

provided the limit limx→a​g′(x)f′(x)​ exists (L’ Hopital’s rule). The point ‘a’ may be either finite or improper (+∞ or −∞) 

(b) Indeterminate forms of the type 0. ∞ or ∞ – ∞ are reduced to forms of the type 00​ or ∞∞​ by algebraic transformations.

(c) Indeterminate forms of the type 1∞, ∞0 or 00 are reduced to forms of the type 0 × ∞ by taking logarithms or by the transformation [f(x)]ϕ(x)=eϕ(x)⋅lnf(x)

4.0Solved Examples on Differentiation

Ex.1 Differentiate each of following functions by first principle:

(i) f(x) = tanx (ii) f(x) = esinx

Sol.

(i) f′(x)=limh→0​htan(x+h)−tanx​=limh→0​htan(x+h−x)[1+tanxtan(x+h)]​

=f′(x)=limh→0​htanh​⋅(1+tan2x)=sec2x.

=f′(x)=limh→0​htanh​⋅(1+tan2x)=sec2x.

(ii) f′(x)=limh→0​hesin(x+h)−esinx​=limh→0​esinxsin(x+h)−sinx[esin(x+h)−sinx−1]​(hsin(x+h)−sinx​)

=esinxlimh→0​hsin(x+h)−sinx​=esinxcosx


Ex.2 Differentiate each of following functions

(i) y = x2 + sin x  (ii) y = ex tan x

(iii) y=sinxx​ (iv) y = cos (lnx)

Sol.

(i) y = x2 + sin x

dxdy​=dxd​(x2+sinx)=dxd(x2)​+dxd(sinx)​

dxdy​=2x+cosx

(ii) y = ex tan x

dxdy​=dxd​(extanx)=tanx⋅dxd(ex)​+exdxd​(tanx)

dxdy​=tanx.ex+exsec2x

(iii) y=sinxx​

dxdy​=sin2xsinxdxd​(x)−xdxd​(sinx)​

dxdy​=sin2xsinx−xcosx​

(iv) y = cos (lnx)

dxdy​=dxd​(cos(lnx))

=–sin(lnx).dxd​(lnx)

=–sin(lnx)×x1​

=−xsin(lnx)​


Ex.3 If y=loge​(tan−11+x2​), find dxdy​.

Sol.

y=loge​(tan−11+x2​)

On differentiating we get.

=tan−11+x2​1​⋅1+(1+x2​)21​⋅21+x2​1​⋅2x

=(tan−11+x2​){1+(1+x2​)2}1+x2​x​=(tan−11+x2​)(2+x2)1+x2​x​


Ex.4 Find dxdy​ if y = xx

Sol.

y = xx

Taking log on both side, we get 

log y = log (xx)

log y = x log x

on differentiating, we get 

y1​dxdy​=logx+x×x1​

dxdy​=y[logx+1]

dxdy​=xx[logx+1]


Ex.5 If y=(2−3x)3/4(3−4x)4/5x1/2(1−2x)2/3​ find dxdy​

Sol.

ln y=21​lnx+32​ln(1–2x)–43​ln(2–3x)–54​ln(3–4x)

On differentiating we get,

⇒y1​dxdy​=2x1​−3(1−2x)4​+4(2−3x)9​+5(3−4x)16​

dxdy​=y(2x1​−3(1−2x)4​+4(2−3x)9​+5(3−4x)16​)

Ex.6 If xy + yx = 2, then find dxdy​.

Sol.

Let u = xy and v = yx

u + v = 2   ⇒ dxdu​+dxdv​=0

Now u = xy   and v = yx

⇒ ln u = y lnx  and  ln v = x ln y

u1​dxdu​=xy​+lnxdxdy​ and  

v1​dxdv​=lny+yx​dxdy​

⇒dxdu​=xy(xy​+lnxdxdy​)anddxdv​=yx(lny+yx​dxdy​)

⇒xy(xy​+lnxdxdy​)+yx(lny+yx​dxdy​)=0

⇒dxdy​=−(xylnx+yx⋅yx​)(yxlny+xy⋅xy​)​

Aliter :

φ(x, y) = xy + yx – 2 = 0

dxdy​=∂ϕ/∂y∂ϕ/∂x​=−(xylnx+xyx−1yxn−1+yxlny​)

Ex.7 Differentiation loge (tan x) with respect to sin–1(ex)

Sol.

d(sin−1(ex)d(loge​tanx)​=ex⋅1/1−e2x​cotx⋅sec2x​=sinxcosxe−x1−e2x​​


Ex.8 If f(x) = 2x + x3 + 1 and g(x) = f–1(x), then find g’(2)

Sol.

g(x)=f–1(x)

g(f(x))=x

g’(f(x)).f’(x)=1

g’(f(x)=f′(x)1​=2xln2+3x21​

f(x)=2

2x+x3+1=2⇒x=0

g′(f(0))=f′(0)1​=ln21​

g′(2)=ln21​

Ex.9 If x = a(t + sin t) and y = a(1 – cos t), find dx2d2y​.

Sol.

Here x = a(t + sin t) and y = a(1 – cos t)

Differentiating both sides w.r.t., t we get :

dtdx​=a(1+cost) anddtdy​=a(sint)

∴dtdy​=a(1+cost)asint​=2cos22t​2sin2t​⋅cos2t​​=tan(2t​)

Again differentiating both sides, we get,

dx2d2y​=sec2(2t​)⋅21​⋅dxdt​=21​sec2(t/2)⋅a(1+cost)1​=2a1​⋅2(cos22t​)sec2(2t​)​

Hence, dx2d2y​=4a1​⋅sec4(2t​)


Ex.10 Find limx→0​x3sinx−x​

Sol.

limx→0​x3sinx−x​(00​)

applying L’ Hopital rule

limx→0​3x2cosx−1​=limx→0​−31​x2(1−cosx)​=−61​

5.0Practice Problem on Differentiation

(1) Find the derivative of y = cos(x2) using first principle.

(2) If f(x) = (1 + x)(3 + x2)1/2, then f'(–1) is equal to-

(A) 0 (B) 22​ (C) 4 (D) 6

(3) If y=x6+x3+1x12+x6+1​&dxdy​=x2(ax3+b), then the value of (a + b) is equal to

(4) If f(x) = (x + 1)(x + 2) ……. (x + n) the f'(0) is

(5) If x = secθ & y = secnθ – cosnθ, then show that (x2+4)(dxdy​)2=n2(y2+4)

(6) If y=sinx+sinx+sinx+……∞​​​, then dxdy​(sinx>0) , is equal to-

(A) 2y−1cosx​ (B) 1+4sinx​cosx​

(C) y2+sinxycosx​ (D) y2−sinxycosx​

(7) If x = 2cos t – cos 2t ; y = 2sin t – sin 2t, find dx2d2y​ at t=2π​.

(8) dxd​{sin2(cot−11−x1+x​​)}=

(A) −21​ (B) 0 (C) 21​ (D) –1

(9) If f(x) = x + 3x3 + 5x5 and g = f–1, then find g'(9) and g"(9)

(10) Prove that limx→0+​xx=1

Answers:

(1) –2x sin(x2)

(2) C  

(3) 3

(4) n!(1+21​+31​+41​…..+n1​)

(6) A, B, C

(7) −23​

(8) A

(9) g′(9)=351​,g′′(9)=(35)3118​

6.0Sample Questions on Differentiation

Q.1 What is differentiation?

Ans. The instantaneous rate of change of a function with respect to another quantity is called differentiation.

If y = f(x) is a differentiable function of x, then

dxdy​=f′(x)=limΔx→0​Δxf(x+Δx)−f(x)​

Q.2 What are the differentiation Rules in calculus?

Ans. If f and g are derivable functions of x, then

(a) dxd​(f±g)=dxdf​±dxdg​

(b) dxd​(cf)=cdxdf​, where c is any constant

(c) dxd​(fg)=fdxdg​+gdxdf​ where g ≠ 0 known as “PRODUCT RULE”

(d) dxd​( gf​)=g2g(dxdf​)−f(dxdg​)​ where g ≠ 0 known as “QUOTIENT RULE”

(e) If y = f(u) & u = g(x) then dxdy​=dudy​⋅dxdu​ known as “CHAIN RULE”

Table of Contents


  • 1.0Derivative By First Principle
  • 2.0Fundamental Theorems
  • 3.0Derivative Of Inverse Function
  • 3.1Higher order Derivatives
  • 3.2L. Hopital’s Rule
  • 4.0Solved Examples on Differentiation
  • 5.0Practice Problem on Differentiation
  • 6.0Sample Questions on Differentiation

Frequently Asked Questions

The derivative of constant function is zero.

We use the differentiation to find the maximum or minimum values of a function, the velocity and acceleration of moving objects and the tangent of the curve.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key
    • JEE Advanced 2025 Answer Key
    • JEE Advanced Rank Predictor

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO