• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
JEE Maths
Differentiation Formulas

Differentiation Formulas 

Differentiation is one of the most important topics in calculus, especially for Class 12 students preparing for competitive exams like JEE. It is the process of finding the derivative of a function, which measures the rate of change of a quantity. In this blog, we will cover all differentiation formulas, including basic formulas, advanced rules, and solved examples to help you master differentiation concepts effectively.

1.0What Are Differentiation Formulas?

Differentiation formulas are predefined rules that help us compute the derivative of a function in an easy and systematic way without going back to first principles every time. These formulas are essential for solving problems efficiently in exams.

2.0Basic Differentiation Formulas (Class 12 & JEE)

Function f(x)

Differentiation Formula f'(x)

xn

nxn−1

sin x

cos x

cos x

-sin x

tan x

sec2 x

cot x

−cosec2 x

sec x

sec x tan x

csc x

-csc x . cot x

ex

ex

ax

ax ln a

ln x

x1​

loga​x

x ln a1​

3.0Important Differentiation Formulas and Rules

1. Product Rule: dxd​[u(x)⋅v(x)]=u′(x)v(x)+u(x)v′(x)

2. Quotient Rule: dxd​[v(x)u(x)​]=[v(x)]2v(x)u′(x)−u(x)v′(x)​

3. Chain Rule: If y = f(g(x)), then: dxdy​=f′(g(x))⋅g′(x)

4.0Examples of Differentiation Formulas 

Example 1: Differentiate f(x)=x5+3x3−2x+7.

Solution: f′(x)=5x4+9x2−2


Example 2: Differentiate f(x)=sinx⋅cosx.

Solution : f′(x)=(cosx)(cosx)+(sinx)(−sinx)=cos2x−sin2x


Example 3: Differentiate f(x)=sin(3x2+2x)

Solution: f′(x)=cos(3x2+2x)⋅(6x+2)=(6x+2)cos(3x2+2x)


Example 4: Differentiate f(x)=x−1x2+1​

Solution:

f′(x)=(x−1)2(x−1)(2x)−(x2+1)(1)​        =(x−1)22x(x−1)−(x2+1)​

Simplify numerator: x2−2x−x2−1=x2−2x−1

Thus, f′(x)=(x−1)2x2−2x−1​


Example 5: Differentiate f(x)=x2+1sinx​

Solution:

f′(x)=(x2+1)2(x2+1)cosx−sinx⋅2x​

So,

f′(x)=(x2+1)2(x2+1)cosx−2xsinx​


Example 6: Differentiate f(x)=cos3(2x+1)

Solution:

Let u=cos(2x+1) so f(x)=u3

Step 1 – Apply chain rule:

f′(x)=3u2dxdu​=3cos2(2x+1)dxd​[cos(2x+1)].

Step 2 – Differentiate cos(2x+1) :

dxd​[cos(2x+1)]=−sin(2x+1)⋅2=−2sin(2x+1).

Step 3 – Combine:

f′(x)=3cos2(2x+1)⋅(−2sin(2x+1))=−6cos2(2x+1)sin(2x+1).


Example 7: Differentiate f(x)=ln(x2+sinx)

Solution:

f′(x)=dxd​[ln(x2+sinx)]=x2+sinx2x+cosx​.


Example 8: Differentiate f(x)=tan−1(1−x22x​)

Solution:

We know that:dxd​[tan−1x]=1+x21​

Let u=1−x22x​

Step 1 – Derivative of u:

dxdu​=(1−x2)2(1−x2)(2)−(2x)(−2x)​=(1−x2)22(1−x2)+4x2​=(1−x2)22+2x2​

Step 2 – Apply chain rule:

f′(x)=1+u21​dxdu​

Simplify 1+u2 :

1+(1−x22x​)2=(1−x2)2(1−x2)2+(2x)2​=(1−x2)21−2x2+x4+4x2​=(1−x2)21+2x2+x4​

Thus, f′(x)=1+2x2+x42+2x2​


Example 9: Differentiate f(x)=exsinx

Solution  :

f′(x)=dxd​[exsinx]=exsinx+excosx

So,

f′(x)=ex(sinx+cosx)


Example 10: Find dx2d2​[x3lnx]

Solution:

Step 1 – First derivative:

f′(x)=dxd​[x3lnx]=3x2lnx+x3⋅x1​=3x2lnx+x2

Step 2 – Second derivative:

f′′(x)=dxd​[3x2lnx+x2]=3[2xlnx+x]+2x=6xlnx+3x+2x=6xlnx+5x

So, f′′(x)=x(6lnx+5)


Example 11: Differentiate implicitly: x2+y2=25

Solution:

Differentiate both sides w.r.t x: 2x+2ydxdy​=0

Solving for dxdy​

dxdy​=−yx​


Example 12: Differentiate f(x)=(x2+1)x

Solution:

Step 1 – Take logarithm on both sides: lnf(x)=xln(x2+1)

Step 2 – Differentiate both sides:

f(x)f′(x)​=ln(x2+1)+x⋅x2+12x​=ln(x2+1)+x2+12x2​

Step 3 – Multiply by f(x):

f′(x)=(x2+1)x[ln(x2+1)+x2+12x2​]

5.0Practice Questions on Differentiation Formulas

  1. Differentiate f(x)=e2xsinx
  2. Find the derivative of f(x)=ln(x2+1)
  3. Differentiate f(x)=tan−1(3x)
  4. Find dxd​[x3ln x]

6.0Sample Question on Differentiation Formulas

Q1. What is the basic differentiation formula for ?

Ans: dxd​xn=nxn−1

Table of Contents


  • 1.0What Are Differentiation Formulas?
  • 2.0Basic Differentiation Formulas (Class 12 & JEE)
  • 3.0Important Differentiation Formulas and Rules
  • 4.0Examples of Differentiation Formulas 
  • 5.0Practice Questions on Differentiation Formulas
  • 6.0Sample Question on Differentiation Formulas

Frequently Asked Questions

Yes, it is frequently asked in various forms, especially when differentiating products of two or more functions.

For a composite function y = f(g(x)), apply: (dy/dx = f'(g(x)).g'(x)

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET Previous Year Papers
    • NEET Sample Papers
    • JEE Main Sample Papers
    • CBSE Sample Papers

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO