• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
JEE Maths
Eigenvalues of a Matrix

Eigenvalues of a Matrix

In linear algebra, eigenvalues are special numbers associated with a square matrix. They reveal important characteristics like stability, direction, and scaling of vector transformations. Widely used in mathematics, physics, and data science, eigenvalues simplify complex matrix operations. Understanding eigen values is key for solving systems of equations, quantum mechanics, and even in machine learning techniques like PCA (Principal Component Analysis).

1.0Definition of Eigenvalues

An eigenvalue of a square matrix A is a scalar λ such that:

Ax=λx

Here, A is an n × n matrix, x is a non-zero vector (called the eigenvector), and λ is the eigenvalue. This equation means that multiplying a matrix A by a vector x results in a scaled version of x, not a rotated or otherwise transformed one.

2.0Eigenvalue Formula

To find the eigenvalues of a matrix, use the characteristic equation:

det(A−λl)=0

Where:

  • A is a square matrix,
  • I is the identity matrix of the same size,
  • λ represents eigenvalues,
  • det stands for determinant.

This results in a polynomial equation in λ. The roots of this polynomial are the eigenvalues of the matrix.

3.0Eigenvalue of a 2×2 Matrix

For a 2×2 matrix: A=[ac​bd​]

The characteristic equation becomes:

det([a−λbcd−λ​])=0

⇒(a−λ)(d−λ)−bc=0

⇒λ2−(a+d)λ+(ad−bc)=0

The roots of this quadratic equation give the eigenvalues of the 2×2 matrix.

4.0Properties of Eigen Values

Here are some key properties of eigen values for square matrices:

  1. Only Square Matrices Have Eigenvalues: Non-square matrices do not have eigenvalues.
  2. Sum of Eigenvalues = Trace of Matrix: ∑λ1​=Tr(A)
  3. Product of Eigenvalues = Determinant of Matrix: ∏λi​=det(A)
  4. Eigenvalues of a Diagonal Matrix are the Diagonal Elements.
  5. If A is symmetric, all eigenvalues are real.
  6. Eigenvalues of A⁻¹ are reciprocal of A’s eigenvalues.
  7. If A is triangular, eigenvalues are its diagonal entries.

5.0Example: Finding Eigenvalues of a 2×2 Matrix

Example 1: Let  A=[41​23​]

Solution: 

Step 1: Set up the characteristic equation:

det(A−λI)=0

=det([4−λ1​23−λ​])

=(4−λ)(3−λ)−(2)(1)

=λ2−7λ+10=0

Step 2: Solve the quadratic equation:

λ=27±49−40​​=27±3​

⇒λ1​=5, λ2​=2 

Hence, the eigenvalues are 5 and 2.

Example 2: Let A=​2−10​−12−1​0−12​​. Find the eigenvalues of matrix A.

Solution:

This is a symmetric tridiagonal matrix. Use the characteristic equation:

det(A−λI)=0

⇒​2−λ−10​−12−λ−1​0−12−λ​​=0 

Let’s evaluate the determinant using cofactor expansion:

Let D(λ)=det(A−λI)

Use shortcut tridiagonal determinant formula or compute directly:

D(λ)=(2−λ)[(2−λ)2−1]−(−1)2(2−λ)D(λ)=(2−λ)[(2−λ)2−1]−(2−λ)D(λ)=(2−λ)[(2−λ)2−1]−(2−λ)

Factor out : (2−λ)

=(2−λ)[(2−λ)2−1−1]=(2−λ)[(2−λ)2−2]

Let  x=2−λ

⇒D=x(x2−2)=x3−2x=0⇒x(x2−2)=0⇒x=0, x=±2​

So,

2−λ=0⇒λ=22−λ=2​⇒λ=2−22​−λ=−2​⇒λ=2+2​

Eigenvalues:

2, 2+2​, 2−2​

Example 3: Find the eigenvalues of  A=​700​0−30​005​​.

Solution:

For a diagonal matrix, the eigenvalues are the diagonal elements.

So, the eigenvalues are:

7, −3, 5  

Example 4: Let A=[01​−10​]. Find the eigenvalues of A.

Solution:

det(A−λI)=​−λ1​−1−λ​​=λ2+1=0

λ=±i

Eigenvalues: i, -i (Complex)

Example 5: Let A=[ab​ba​]. Show that the eigenvalues of A are a + b and a - b. 

Solution:

A=[ab​ba​]⇒A−λI=[a−λb​ba−λ​]

det(A−λI)=(a−λ)2−b2=0

⇒(a−λ)2=b2⇒a−λ=±b⇒λ=a±b

Eigenvalues: a+b, a−b

Example 6: Let A=[62​23​]. Find the eigenvalues and verify:

  • Sum of eigenvalues = Trace(A)
  • Product of eigenvalues = det(A)

Solution:

Characteristic equation:

det(A−λI)=​6−λ2​23−λ​​=0

⇒(6−λ)(3−λ)−4=0

⇒λ2−9λ+14=0

⇒λ=29±81−56​​=29±5​

⇒λ1​=7, λ2​=2

Verification:

  • Sum = 7 + 2 = 9 = Trace(A) 
  • Product = 7⋅2 = 14 = det(A) 

Verified

6.0Applications of Eigenvalues

  • Physics: Quantum mechanics, vibration analysis
  • Mathematics: Stability of systems, differential equations
  • Engineering: Stress-strain analysis
  • Data Science: Principal Component Analysis (PCA)

7.0Practice Question on Eigenvalues

  1. Find the eigen values of the matrix: A=[12​21​]. (Hint: Use the characteristic equation: det(A−λI)=0)

Table of Contents


  • 1.0Definition of Eigenvalues
  • 2.0Eigenvalue Formula
  • 3.0Eigenvalue of a 2×2 Matrix
  • 4.0Properties of Eigen Values
  • 5.0Example: Finding Eigenvalues of a 2×2 Matrix
  • 6.0Applications of Eigenvalues
  • 7.0Practice Question on Eigenvalues

Frequently Asked Questions

An eigenvalue is a scalar that scales the eigenvector when multiplied by the matrix. The eigenvector is the non-zero vector that does not change direction under the transformation.

Yes. If the matrix has complex entries or if the characteristic polynomial has no real roots, the eigenvalues may be complex.

Yes, if a matrix is symmetric (i.e., A^(T) = A ), all its eigenvalues are real.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor
    • NEET 2025 Counselling

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO