• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
JEE Maths
Euler’s Formula and De Moivre’s Theorem

Euler’s Formula and De Moivre’s Theorem

Euler’s Formula and De Moivre’s Theorem are powerful tools in complex number theory. Euler’s Formula, eiθ=cosθ+isinθ, bridges exponential and trigonometric forms, while De Moivre’s Theorem, (cosθ+isinθ)n=cos(nθ)+isin(nθ), simplifies powers and roots of complex numbers. These theorems play a crucial role in advanced mathematics, particularly in JEE-level problems involving polar forms, complex roots, and trigonometric identities.

1.0What is Euler’s Formula?

Euler’s formula is a fundamental identity in complex analysis that connects the exponential function with trigonometric functions. It states: eix=cosx+isinx

Where:

  • e is the base of the natural logarithm,
  • i is the imaginary unit (−1​)
  • x is a real number (often an angle in radians).

2.0What is Euler’s Theorem?

Sometimes, Euler’s formula is referred to as Euler’s theorem, especially when applied to complex numbers in exponential form. In this context:

Euler’s Theorem: eiθ=cosθ+isinθ

This is often used to express complex numbers in polar or exponential form.

3.0How to Prove Euler’s Theorem

To prove Euler's theorem, we use the Taylor series expansion of ex, cos x, and sin x:

Step-by-step:

 eix=1+ix+2!(ix)2​+3!(ix)3​+4!(ix)4​+...

Breaking this into real and imaginary parts:

  • Real part: 1−2!x2​+4!x4​+..
  • Imaginary part: ix−3!ix3​+5!ix5​−....=isinx

Hence,

eix=cosx+isinx

This completes the proof of Euler’s theorem.

4.0De Moivre’s Theorem

De Moivre’s Theorem is a powerful tool to compute powers and roots of complex numbers in polar form.

De Moivre’s Formula

If z=cosθ+isinθ, then:

(cosθ+isinθ)n=cos(nθ)+isin(nθ)

Or using Euler’s form: (eiθ)n=einθ

5.0Applications of De Moivre's Theorem:

  • Finding powers of complex numbers
  • Finding nth roots of complex numbers
  • Trigonometric identities
  • Solving complex number equations

6.0Euler’s Formula and De Moivre’s Theorem

The two formulas are tightly connected.

Using Euler's formula:

(cosθ+isinθ)n=(eiθ)n=einθ=cos(nθ)+isin(nθ)

Thus, De Moivre’s Theorem is a direct consequence of Euler’s formula.

7.0What is the Difference Between Euler’s Formula and De Moivre’s Theorem?

Feature

Euler’s Formula

De Moivre’s Theorem

Expression

eiθ=cosθ+isinθ

(cosθ+isinθ)n=cos(nθ)+isin(nθ)

Focus

Describes exponential form of complex numbers

Calculates powers/roots of complex numbers

Based On

Taylor series

Built upon Euler’s formula

Application

Conversion & analysis

Trigonometry, solving complex equations

8.0How Do You Use Euler's Formula to Prove De Moivre’s Formula?

Start with:

z=eiθ⇒zn=(eiθ)n=einθ=cos(nθ)+isin(nθ)

Which matches the RHS of De Moivre’s Theorem.

Thus, Euler’s formula is used to derive De Moivre’s formula.

9.0Solved Examples on Euler’s Formula and De Moivre’s Theorem

Example 1: Express cosθ+isinθ in exponential form.

Solution:

Using Euler's formula:

eiθ=cosθ+isinθ

⇒Cosθ+iSinθ=eiθ


Example 2: Find (cos3π​+isin3π​)5

Solution:

Using De Moivre’s Theorem:

(cosθ+isinθ)n=cos(nθ)+isin(nθ)

=cos(5.3π​)+isin(5.3π​)

=cos(35π​)+isin(35π​)

=21​−i.23​​


Example 3: Prove that (cosθ+isinθ)n+(cosθ−isinθ)n is real.

Solution:

Using De Moivre’s Theorem:

(cosθ+isinθ)n=cos(nθ)+isin(nθ)

(cosθ−isinθ)n−cos(nθ)−isin(nθ)

Adding:

=2cos(nθ)⇒A Real Number


Example 4: Find all cube roots of 8(cos3π​+isin3π​)

Solution:

Use De Moivre’s Theorem for nth roots:

z=r1/n[cos(nθ+2kπ​)+isin(nθ+2kπ​)],k=0,1,2

Given, r=8,θ=3π​,n=3

38​=2⇒Roots:

  1. 2[cos(9π​)+isin(9π​)]
  2. 2[cos(97π​)+isin(97π​)]
  3. 2[cos(913π​)+isin(913π​)]


Example 5: Prove eiπ+1=0

Solution:

Using Euler’s Formula:

eiπ=cosπ+isinπ

⇒eiπ=−1+i.0=−1

⇒eiπ+1=0

Known as Euler’s Identity — one of the most beautiful equations in mathematics!


Example 6: Express cosθ in terms of eiθ and e−iθ using Euler’s Formula.

Solution:

Euler’s formulas:

eiθ=cosθ+isinθ and e−iθ=cosθ−isinθ

Add both equations: eiθ+e−iθ=2cosθ

Thus, Cosθ=2eiθ+e−iθ​


Example 7: Find all cube roots of unity using De Moivre’s Theorem.

Solution:
We know cube roots of unity are solutions of z3=1.

So, let z=cisθ=cosθ+isinθ

z3=cis(30)=1=cis(0+2kπ),fork=0,1,2 

Then,

3θ=2kπ⇒θ=32kπ​

Thus, roots are:

 z0​=cis0=1,z1​=cis(32π​),z2​=cis(34π​)


Example 8: Prove that cos3θ=4cos3θ−3cosθusing De Moivre’s Theorem.

Solution:
By De Moivre's theorem:

(cosθ+isinθ)3=cos(3θ)+isin(3θ)

Expand LHS using binomial theorem:

=cos3θ+3icos2θsinθ−3cosθsin2θ−isin3θ

Group real and imaginary parts:

Real part = cos3θ−3cosθsin2θ

But sin2θ=1−cos2θ, so:

cos3θ−3cosθ(1−cos2θ)=4cos3θ−3cosθ

Hence, cos(3θ)=4cos2θ−3cosθ


Example 9: Evaluate 5 (cos5π​+isin5π​)5

Solution: By De Moivre’s Theorem:

(cos5π​+isin5π​)5=cos(π)+isin(π)=−1+i(0)=−1


Example 10: Prove cosθ=2eiθ+e−iθ​ and sinθ=2ieiθ−e−iθ​

Solution:

From Euler’s Formula:

eiθ=cosθ+isinθ,e−iθ=cosθ−isinθ

Add:

eiθ+e−iθ=2cosθ

⇒cosθ=2eiθ+e−iθ​ 

Subtract:

eiθ−e−iθ=2isinθ

⇒sinθ=2ieiθ−e−iθ​ 


Example 11: Find (cos4π​+isin4π​)3

Solution: 

Using De Moivre’s Theorem:

=cos(3.3π​)+isin(3.4π​)

=cos43π​+isin43π​

=−2​1​+i2​1​


Example 12: Find the cube roots of unity using De Moivre’s Theorem.

Solution: 

Cube roots of unity:

z=1=e2kiπ/3for k=0,1,2

⇒z1​=1,z2​=ω,z3​=ω2 

Where ω=−21​+23​​i

10.0Practice Questions on Euler’s Formula and De Moivre’s Theorem

  1. Evaluate (cos6π​+isin6π​)4 using De Moivre’s Theorem.
  2. Express cos2π​+isin2π​ in exponential form.
  3. Find the 4th roots of 16(cos4π​+isin4π​).
  4. If z=eiθ, show that zn+zˉn is real.
  5. Prove: (cosx+isinx)n−(cosx−isinx)n=2isin(nx)

11.0Sample Questions on Euler’s Formula and De Moivre’s Theorem

Q1. What is the formula for De Moivre's theorem?

Ans: (Cosθ+isinθ)n=cos(nθ)+isin(nθ)


Q2. How do you use Euler's formula to prove De Moivre’s formula?

Ans: Using Euler’s form:

 z=eiθ

⇒zn=einθ=cos(nθ)+isin(nθ)

Table of Contents


  • 1.0What is Euler’s Formula?
  • 2.0What is Euler’s Theorem?
  • 3.0How to Prove Euler’s Theorem
  • 4.0De Moivre’s Theorem
  • 4.1De Moivre’s Formula
  • 5.0Applications of De Moivre's Theorem:
  • 6.0Euler’s Formula and De Moivre’s Theorem
  • 7.0What is the Difference Between Euler’s Formula and De Moivre’s Theorem?
  • 8.0How Do You Use Euler's Formula to Prove De Moivre’s Formula?
  • 9.0Solved Examples on Euler’s Formula and De Moivre’s Theorem
  • 10.0Practice Questions on Euler’s Formula and De Moivre’s Theorem
  • 11.0Sample Questions on Euler’s Formula and De Moivre’s Theorem

Frequently Asked Questions

Euler's formula states: e^(iӨ) = cosӨ + i sinӨ It expresses complex numbers in exponential form and is known as Euler’s theorem in polar complex representation.

Expand e^(iӨ) using the Taylor series and separate the real and imaginary parts. You’ll get \cos x and i \sin x, respectively.

Euler’s formula relates exponentials to trigonometric functions, while De Moivre’s theorem helps calculate powers and roots of complex numbers using Euler’s form.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor
    • NEET 2025 Counselling

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO