• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
  • NEW
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Integration of Sin2x

Integration of Sin2x 

The integration of sin2x is a common problem in calculus, especially in indefinite integrals. It appears in various mathematical contexts such as differential equations, wave functions, and physics problems. In this blog, we’ll understand the Integration of Sin 2x Derivation, memorize the Integration of Sin 2x formula, and solve examples to boost your problem-solving skills.

1.0What is the Integration of sin2x?

The integration of sin2x means finding the antiderivative (or the integral) of the trigonometric function sin(2x). This involves using substitution methods or recognizing patterns from standard formulas.

2.0Integration of Sin 2x Derivation

Let’s derive the integral of sin2x step by step:

We know: ∫sin(ax)dx=−a1​cos(ax)+C

Here, a = 2, so applying the formula:

∫sin(2x)dx=−21​cos(2x)+C

Hence, the Integration of Sin 2x Formula is:

∫sin(2x)dx=−21​cos(2x)+C

3.0Solved Problems on Integration of sin2x

Example 1: ∫sin(2x)dx

Solution: Using the standard formula,: ∫sin(2x)dx=−21​cos(2x)+C


Example 2: ∫5sin(2x)dx

Solution: Factor out the constant: ∫sin(2x)dx=5.(−21​cos(2x))+C


Example 3: ∫sin(2x+π)dx

Solution: Use trigonometric identity:

sin(2x+π)=sin(2x)=sin(2x+π)dx

∫−sin(2x)dx=21​cos(2x)+C


Example 4: ∫xsin(2x)​dx

Solution:

This is a non-elementary integral, i.e., it can't be solved using elementary functions. It is typically expressed using the Sine Integral function (Si).

Hence, the answer is:

∫xsin(2x)​dx=Si(2x)+C


Example 5: ∫02π​​sin(2x)dx

Solution:

Use the formula:

∫sin(2x)dx=−21​cos(2x)

Now apply limits:

=[−21​cos(2x)]02π​​

=−21​[cos(π)−cos(0)]

=−21​[−1−1]=1

4.0Practice Questions on Integration of Sin2x

  1. ∫3sin(2x)dx
  2. ∫sin(4x)dx
  3. ∫sin2(2x)dx
  4. ∫sin(2x)cos(2x)dx
  5. ∫xsin(2x)dx

5.0Sample Questions on Integration of Sin2x

Q1. What is the integration of sin2x?

Ans: The integration of sin2x is:

∫sin(2x)dx=−21​cos(2x)+C


Q2. What formula is used to integrate sin2x?

Ans: We use the standard trigonometric integral:

∫sin(ax)dx=−a1​cos(ax)+C

For sin2x, a = 2, so the result becomes:

−21​cos(2x)+C


Q3. Can we use substitution to solve ∫sin(2x)dx?

Ans:
Yes. Let u = 2x, then dx=2du​. So:

∫sin(2x)dx=∫sin(u)⋅2du​

=−21​cos(u)+C

=−21​cos(2x)+C


Q4. What is the definite integral of sin2x from 0 to 2π​?

Ans:  ∫02π​​sin(2x)dx=1


Q5. What is the derivative of −12cos⁡(2x)−21​cos(2x)?

Ans: The derivative of −21​cos(2x) is:

dxd​(−21​cos(2x))=sin(2x)

This confirms the correctness of the integral.


Q6. Is the integration of sin2x and sin(x²) the same?

Ans: No.

  • ∫sin(2x)dx is solvable using basic trigonometric integration.
  • ∫sin(x2)dx is a non-elementary integral and requires special functions like the Fresnel integral.

Table of Contents


  • 1.0What is the Integration of sin2x?
  • 2.0Integration of Sin 2x Derivation
  • 3.0Solved Problems on Integration of sin2x
  • 4.0Practice Questions on Integration of Sin2x
  • 5.0Sample Questions on Integration of Sin2x

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO