• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
JEE Maths
Integration Rules

Integration Rules: Formulas, Properties, Methods & Solved Examples  

1.0Introduction to Integration

Integration is one of the most important topics to learn in Calculus, and it is a good base for JEE Main and JEE Advanced problems. It is thought to be the opposite of differentiation.

If dxdy​=f(x),then:

y=∫f(x) dx+C

Here,

  • ∫f(x)dx = integral of f(x) with respect to x
  • C = constant of integration

2.0Basics of Integration

  • Integration is used to find area under curves, volume of solids, and in solving differential equations.
  • Every function has infinitely many antiderivatives differing by a constant C.
  • Example: ∫x2dx=3x3​+C.

3.0Standard Integration Formulas

Some important formulas for JEE:

  1. ∫xndx=n+1xn+1​+C(n=−1)
  2. ∫x1​dx=ln∣x∣+C
  3. ∫exdx=ex+C
  4. ∫axdx=lnaax​+C
  5. ∫sinxdx=−cosx+C
  6. ∫cosxdx=sinx+C
  7. ∫sec2xdx=tanx+C
  8. ∫csc2xdx=−cotx+C
  9. ∫secxtanxdx=secx+C
  10. ∫cscxcotxdx=−cscx+C

4.0Fundamental Rules of Integration

Rule 1: Constant Rule

∫kdx=kx+C

Where k is a constant.

Rule 2: Power Rule

∫xndx=n+1xn+1​+C(n=−1)

Rule 3: Sum Rule

∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx

Rule 4: Difference Rule

∫[f(x)−g(x)]dx=∫f(x)dx−∫g(x)dx

Rule 5: Scalar Multiplication Rule

∫k⋅f(x)dx=k∫f(x)dx

Rule 6: Integration of Zero Function

∫0dx=C

Rule 7: Integration of Exponential Functions

∫exdx=ex+C

∫axdx=lnaax​+C

Rule 8: Integration of Logarithmic Functions

∫x1​dx=ln∣x∣+C

Rule 9: Integration of Trigonometric Functions

∫sinxdx=−cosx+C

∫cosxdx=sinx+C

∫sec2xdx=tanx+C

Rule 10: Substitution Rule

If x=g(t), then:

∫f(g(t))g′(t)dt=∫f(x)dx

Example:

∫2xcos(x2)dx

Let =˘x2⟹du=2xdx

∫2xcos(x2)dx=∫cosudu=sinu+C=sin(x2)+C

Rule 11: Integration by Parts

∫uvdx=u∫vdx−∫(dxdu​∫vdx)dx

Useful for functions like x sin⁡x, xe^x, etc.

Rule 12: Integration of Rational Functions (Partial Fractions)

For rational functions:

∫Q(x)P(x)​dx

We decompose into partial fractions for easier integration.

5.0Properties of Definite Integrals

  1. ∫aa​f(x)dx=0
  2. ∫ab​f(x)dx=−∫ba​f(x)dx
  3. ∫ab​[f(x)+g(x)]dx=∫ab​f(x)dx+∫ab​g(x)dx
  4. If f(x) is even:∫−aa​f(x)dx=2∫0a​f(x)dx

∫−aa​f(x)dx=2∫0a​f(x)dx

5. If f(x) is odd:

∫−aa​f(x)dx=0

6.0Solved Examples on Integration Rule

Example 1

Evaluate ∫(3x2+2x+1)dx

Solution:

∫(3x2+2x+1)dx=x3+x2+x+C

Example 2

Evaluate ∫e2xdx

Solution:

∫e2xdx=21​e2x+C

Example 3

Evaluate ∫x2+11​dx

Solution:

∫x2+11​dx=tan−1(x)+C

Example 4

Evaluate ∫xcos⁡x dx.

Solution (By Parts):
Let u=x,dv=cos ⁡xdx.

∫xcosxdx=xsinx−∫1⋅sinxdx

=xsinx+cosx+C

Example 5

Evaluate ∫(x−1)(x+2)1​dx

Solution (Partial Fractions):

(x−1)(x+2)1​=x−1A​+x+2B​

1 = A(x+2) + B(x-1)

Solving: A=31​,B=−31​

∫(x−1)(x+2)1​dx=31​ln∣x−1∣−31​ln∣x+2∣+C

Table of Contents


  • 1.0Introduction to Integration
  • 2.0Basics of Integration
  • 3.0Standard Integration Formulas
  • 4.0Fundamental Rules of Integration
  • 5.0Properties of Definite Integrals
  • 6.0Solved Examples on Integration Rule
  • 6.1Example 1
  • 6.2Example 2
  • 6.3Example 3
  • 6.4Example 4
  • 6.5Example 5

Frequently Asked Questions

The basic rules include constant rule, power rule, sum rule, difference rule, substitution, and integration by parts.

Integration is used in solving problems of areas, volumes, probability, and calculus-based applications.

Indefinite integral gives a family of functions with constant C. A definite integral gives a numerical value (area under curve).

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET Previous Year Papers
    • NEET Sample Papers
    • JEE Main Sample Papers
    • CBSE Sample Papers

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO