Integration Rules: Formulas, Properties, Methods & Solved Examples
1.0Introduction to Integration
Integration is one of the most important topics to learn in Calculus, and it is a good base for JEE Main and JEE Advanced problems. It is thought to be the opposite of differentiation.
If dxdy=f(x),then:
y=∫f(x) dx+C
Here,
- ∫f(x)dx = integral of f(x) with respect to x
- C = constant of integration
2.0Basics of Integration
- Integration is used to find area under curves, volume of solids, and in solving differential equations.
- Every function has infinitely many antiderivatives differing by a constant C.
- Example: ∫x2dx=3x3+C.
3.0Standard Integration Formulas
Some important formulas for JEE:
- ∫xndx=n+1xn+1+C(n=−1)
- ∫x1dx=ln∣x∣+C
- ∫exdx=ex+C
- ∫axdx=lnaax+C
- ∫sinxdx=−cosx+C
- ∫cosxdx=sinx+C
- ∫sec2xdx=tanx+C
- ∫csc2xdx=−cotx+C
- ∫secxtanxdx=secx+C
- ∫cscxcotxdx=−cscx+C
4.0Fundamental Rules of Integration
Rule 1: Constant Rule
∫kdx=kx+C
Where k is a constant.
Rule 2: Power Rule
∫xndx=n+1xn+1+C(n=−1)
Rule 3: Sum Rule
∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx
Rule 4: Difference Rule
∫[f(x)−g(x)]dx=∫f(x)dx−∫g(x)dx
Rule 5: Scalar Multiplication Rule
∫k⋅f(x)dx=k∫f(x)dx
Rule 6: Integration of Zero Function
∫0dx=C
Rule 7: Integration of Exponential Functions
∫exdx=ex+C
∫axdx=lnaax+C
Rule 8: Integration of Logarithmic Functions
∫x1dx=ln∣x∣+C
Rule 9: Integration of Trigonometric Functions
∫sinxdx=−cosx+C
∫cosxdx=sinx+C
∫sec2xdx=tanx+C
Rule 10: Substitution Rule
If x=g(t), then:
∫f(g(t))g′(t)dt=∫f(x)dx
Example:
∫2xcos(x2)dx
Let =˘x2⟹du=2xdx
∫2xcos(x2)dx=∫cosudu=sinu+C=sin(x2)+C
Rule 11: Integration by Parts
∫uvdx=u∫vdx−∫(dxdu∫vdx)dx
Useful for functions like x sinx, xe^x, etc.
Rule 12: Integration of Rational Functions (Partial Fractions)
For rational functions:
∫Q(x)P(x)dx
We decompose into partial fractions for easier integration.
5.0Properties of Definite Integrals
- ∫aaf(x)dx=0
- ∫abf(x)dx=−∫baf(x)dx
- ∫ab[f(x)+g(x)]dx=∫abf(x)dx+∫abg(x)dx
- If f(x) is even:∫−aaf(x)dx=2∫0af(x)dx
∫−aaf(x)dx=2∫0af(x)dx
5. If f(x) is odd:
∫−aaf(x)dx=0
6.0Solved Examples on Integration Rule
Example 1
Evaluate ∫(3x2+2x+1)dx
Solution:
∫(3x2+2x+1)dx=x3+x2+x+C
Example 2
Evaluate ∫e2xdx
Solution:
∫e2xdx=21e2x+C
Example 3
Evaluate ∫x2+11dx
Solution:
∫x2+11dx=tan−1(x)+C
Example 4
Evaluate ∫xcosx dx.
Solution (By Parts):
Let u=x,dv=cos xdx.
∫xcosxdx=xsinx−∫1⋅sinxdx
=xsinx+cosx+C
Example 5
Evaluate ∫(x−1)(x+2)1dx
Solution (Partial Fractions):
(x−1)(x+2)1=x−1A+x+2B
1 = A(x+2) + B(x-1)
Solving: A=31,B=−31
∫(x−1)(x+2)1dx=31ln∣x−1∣−31ln∣x+2∣+C