• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
    • ALLEN e-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Integration Trigonometric Functions

Integration Trigonometric Functions 

Integration of trigonometric functions involves finding the antiderivatives of functions like sine, cosine, tangent, and their reciprocals. This process is essential in calculus, as it helps solve problems related to areas, motion, and periodic phenomena. Common techniques include using standard formulas, substitution, and trigonometric identities to simplify the integrals. Mastery of integrating trigonometric functions is crucial for solving complex problems in physics, engineering, and other fields that involve waveforms, oscillations, and circular motion.

1.0What Are Trigonometric Functions?

Trigonometric functions, such as sine, cosine, tangent, and their reciprocals, are fundamental functions in mathematics that arise frequently in calculus and various applications. The process of integrating these functions involves finding their antiderivatives or primitive functions, which is crucial in solving many problems in physics, engineering, and other fields.

2.0Integration of Trigonometric Functions Using Substitution

One of the most powerful methods for integrating trigonometric functions is substitution. Substitution is particularly useful when the integrand involves composite trigonometric expressions or when there is a trigonometric identity that can simplify the expression.

Substitution Rule

When dealing with trigonometric integrals, substitution often involves recognizing a function and its derivative within the integrand. For example, if you have an integral of the form:

∫f(g(x))g′(x)dx

You can substitute u = g(x), and consequently, du = g'(x)dx. This simplifies the integral and makes it easier to solve.

3.0Common Integration Trigonometric Functions Formulas

Here are some essential integration trigonometric functions formulas that you should be familiar with: 

1. Integral of Sine:∫sinxdx=−cosx+C 2. Integral of Cosine: ∫cosxdx=sinx+C3. Integral of Tangent:∫tanxdx=−ln∣cosx∣+C4. Integral of Secant Squared: ∫sec2xdx=tanx+C5. Integral of Cosecant Squared: ∫csc2xdx=−cotx+C6. Integral of Cotangent:  ∫cotxdx=ln∣sinx∣+C

These formulas are fundamental and are frequently used to solve various trigonometric integrals.

4.0Integration Trigonometric Functions Examples and Solutions

Example 1:

(∫sin2xdx)

Solution: 

To solve this, we can use the identity for sin2x:

Now, we integrate:

sin2x=21−cos(2x)​Now, we integrate:∫sin2xdx=∫21−cos(2x)​dx=21​[∫1dx−∫cos(2x)dx]=2x​−4sin(2x)​+C

Example 2:

∫sec2xdx

Solution: 

We know from the formula that:

∫sec2xdx=tanx+C 

This is a straightforward integral, and the solution is tanx+C.

Example 3:

∫sinxcosxdx

We can use the substitution method here. Notice that the product of sine and cosine suggests a substitution:

Let , (u=sinx),so(du=cosxdx)

Now, the integral becomes:

∫udu=2u2​+C=2sin2x​+C

5.0Integration Trigonometric Functions in Class 12

For Class 12 students, integration of trigonometric functions is an essential topic in calculus. In this stage, students learn various techniques like substitution, integration by parts, and recognizing standard trigonometric identities. Mastering these concepts is vital not only for exams but also for real-world applications like physics and engineering.

Some key topics students should focus on include:

  • Trigonometric identities: Recognizing and applying identities like (sin2x+cos2x=1),(tan2x+1=sec2x) , etc., helps simplify integrals.
  • Substitution method: As shown in the examples above, substitution is a powerful tool for simplifying trigonometric integrals.
  • Definite integrals: Students should also practice solving definite integrals involving trigonometric functions, which may require applying limits after integration.

6.0Solved Example of Integration Trigonometric Functions

Example 1:

(∫sinxcosxdx)

Solution:

We can use the identity for the product of sine and cosine:sinxcosx=21​sin(2x)Now the integral becomes:∫sinxcosxdx=21​∫sin(2x)dxTo integrate(sin(2x)),we use the basic integral of sine:∫sin(kx)dx=−k1​cos(kx)+CSo,∫sin(2x)dx=−21​cos(2x)+CThus, the solution is:21​(−21​cos(2x))+C=−41​cos(2x)+CSo, the final result is:∫sinxcosxdx=−41​cos(2x)+C 

Example 2:

(∫sin3(x)dx)

Solution:

We start by using the identity sin2(x)=1−cos2(x) ∫sin3(x)dx=∫sin(x)(1−cos2(x))dxNow,let(u=cos(x)),sothat(du=−sin(x)dx).Substituting into the integral:∫sin3(x)dx=−∫(1−u2)duNow, integrate:=−∫(1−u2)du=−(u−3u3​)+CSubstituteback(u=cos(x)):=−(cos(x)−3cos3(x)​)+CThus, the solution is:∫sin3(x)dx=−cos(x)+3cos3(x)​+C

Example 3:

∫sec4(x)dx

Solution:

We can splitsec4(x))into(sec2(x)⋅sec2(x)∫sec4(x)dx=∫sec2(x)⋅sec2(x)dxNow, use the standard formula(∫sec2(x)dx=tan(x)),andlet(u=tan(x)):∫sec4(x)dx=∫sec2(x)(1+tan2(x))dxSubstitute(u=tan(x))sothat(du=sec2(x)dx),and the integral becomes:∫(1+u2)du=u+3u3​+CSubstitute back u=tan(x):∫sec4(x)dx=tan(x)+3tan3(x)​+CThus, the solution is:∫sec4(x)dx=tan(x)+3tan3(x)​+C

Example 4:

∫tan2(x)sec2(x)dx

Solution:

We know that(tan2(x)=sec2(x)−1),so:∫tan2(x)sec2(x)dx=∫(sec2(x)−1)sec2(x)dx=∫sec4(x)dx−∫sec2(x)dxWe already know that(∫sec2(x)dx=tan(x)),so we only need to solve(∫sec4(x)dx),which we did earlier:∫sec4(x)dx=tan(x)+3tan3(x)​+CThus, the solution is:∫tan2(x)sec2(x)dx=(tan(x)+3tan3(x)​)−tan(x)+C=3tan3(x)​+C

Example 5:

∫1+cos2(x)sin(x)​dx

Solution:

Let’s use the substitution u=cos(x)sothat du=−sin(x)dxThe integral becomes:∫1+cos2(x)sin(x)​dx=−∫1+u2du​We recognize that∫1+u21​du=tan−1(u),so:=−tan−1(u)+CSubstitute back  u=cos(x)=−tan−1(cos(x))+CThus, the solution is:∫1+cos2(x)sin(x)​dx=−tan−1(cos(x))+C

Example 6:

∫cos3(x)sin2(x)​dx

Solution:

First, use the identitysin2(x)=1−cos2(x)∫cos3(x)sin2(x)​dx=∫cos3(x)1−cos2(x)​dxThis simplifies to:=∫cos3(x)1​dx−∫cos(x)1​dxNow, the first integral is ∫sec3(x)dx,and the second is∫sec(x)dx.Using known formulas:∫sec3(x)dx=21​sec(x)tan(x)+21​ln∣sec(x)+tan(x)∣+CAnd:∫sec(x)dx=ln∣sec(x)+tan(x)∣+CThus, the solution is:∫cos3(x)sin2(x)​dx=21​sec(x)tan(x)+21​ln∣sec(x)+tan(x)∣−ln∣sec(x)+tan(x)∣+C

7.0Practice Question on Integration Trigonometric Functions

Question 1: Integrate ∫sin2(x)dx

Try solving this integral using an identity and the appropriate integration formulas. (Hint: Use the identity \sin^2 x = \frac{1 - \cos(2x)}{2} ).

Question 2: Integrate ∫tan2(x)dx

Use the identity tan2(x)=sec2(x)−1 to simplify and solve this integral.

Table of Contents


  • 1.0What Are Trigonometric Functions?
  • 2.0Integration of Trigonometric Functions Using Substitution
  • 2.1Substitution Rule
  • 3.0Common Integration Trigonometric Functions Formulas
  • 4.0Integration Trigonometric Functions Examples and Solutions
  • 5.0Integration Trigonometric Functions in Class 12
  • 6.0Solved Example of Integration Trigonometric Functions
  • 7.0Practice Question on Integration Trigonometric Functions

Frequently Asked Questions

In some cases, you can integrate trigonometric functions directly using known formulas. However, for more complex integrals, especially those involving products or compositions of trigonometric functions, substitution or trigonometric identities are essential to simplify the problem.

For definite integrals, you follow the same steps as for indefinite integrals. After solving the integral, you substitute the upper and lower limits into the antiderivative. The result is the difference between the values at these limits.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key
    • JEE Advanced 2025 Answer Key
    • JEE Advanced Rank Predictor

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO