• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
JEE Maths
Inverse Laplace Transform

Inverse Laplace Transform 

The Inverse Laplace Transform is a mathematical process used to retrieve a time-domain function from its Laplace transform. It plays a crucial role in solving differential equations, control systems, and signal analysis. By applying the inverse Laplace transform, we can convert complex algebraic expressions in the s-domain back into original functions in the t-domain. Common techniques include partial fraction decomposition, standard transform pairs, and convolution theorem, making it a powerful tool in engineering and applied mathematics. 

1.0Inverse Laplace Transform Definition

The Inverse Laplace Transform is the process of determining the original time-domain function f(t) from its Laplace transform F(s). Mathematically, if a function f(t) has the Laplace transform F(s), then the inverse Laplace transform, denoted as L−1{F(s)}, recovers f(t).

f(t)=L−1{F(s)}

This operation is crucial for solving linear ordinary differential equations (ODEs) that are easier to handle in the Laplace domain and then revert to the time domain.

2.0Inverse Laplace Transform Formula

The formula for the inverse Laplace transform is typically derived from the Laplace transform table and the residue theorem. However, one commonly used method is by utilizing known pairs of Laplace transform functions and their corresponding time-domain functions.

For instance, if:L(eat)=s−a1​then:L−1{s−a1​}=eat.Similarly, there are Inverse Laplace Transform formulas for various functions. Some of the most commonly used formulas include:  L−1{s2+a21​}=sin(at)  L−1{s1​}=1  L−1{sn1​}=Γ(n)tn−1​

3.0Inverse Laplace Transform Formula List

Here's a list of some useful Inverse Laplace Transform formulas:

Laplace Transform F(s)

Inverse Laplace f(t)

s1​

1

s21​

t

s2+a21​

asin(at)​

s2+2as+a21​

e−at

(s−a)21​

teat

s2+a21​

sin(at)

s2+a2s​

cos(at)

4.0Inverse Laplace Transform by Partial Fraction

One of the most effective methods for finding the Inverse Laplace Transform is by breaking down a complex rational function into simpler fractions using partial fraction decomposition. This method is particularly useful when dealing with higher-order polynomials in the denominator.

Steps for Partial Fraction Decomposition:

  1. Express the Function in Partial Fractions: Break the rational function into simpler terms (fractions) that are easier to transform.
  2. Find the Inverse Laplace of Each Term: For each simplified term, apply known inverse Laplace transforms from the table or formula list.
  3. Combine the Results: Add up the inverse transforms of the individual terms to obtain the final result.

For example, consider finding the Inverse Laplace Transform of:

s2+3s+2s+2​

This would be broken into partial fractions, and each fraction would then be inverted individually.

5.0Solved Example of Inverse Laplace Transform

Example 1: Find the Inverse Laplace Transform of: F(s)=s2+3s+22s+3​.Solution:1. Factor the Denominator: s2+3s+2=(s+1)(s+2).2. Apply Partial Fraction Decomposition:(s+1)(s+2)2s+3​=s+1A​+s+2B​.Solving for A and B, we get A=1 and B=1.3. Find the Inverse Laplace Transform:  L−1{s+11​}=e−t,      L−1{s+21​}=e−2t.  Thus, the inverse Laplace transform of F(s) is:  f(t)=e−t+e−2t.

Example 2: What is the Inverse Laplace Transform of  s2+11​?Solution:The Inverse Laplace Transformofs2+11​is:L−1{s2+11​}=sin(t).This is a standard result from the Laplace transform table.

Example 3: L−1{s2+4s+52s+5​}Solution:Write denominator as:(s+2)2+1.2s+5=2(s+2)+1.(s+2)2+12s+5​=(s+2)2+12(s+2)​+(s+2)2+11​.Using standard pairs,f(t)=2e−2tcost+e−2tsint.

Example 4: L−1{s(s+2)3​}Solution:Partial fractions:s(s+2)3​=23​(s1​−s+21​).Hence:f(t)=23​(1−e−2t).
Example 5: L−1{s2+9s​}Solution:Standard pair:L{cos(at)}=s2+a2s​,with a=3.f(t)=cos(3t).

Example 6: L−1{s2(s+1)5​}Solution:Partial fractions: s2(s+1)5​=−s5​+s25​+s+15​.Inverse transforms give:f(t)=−5+5t+5e−t.

Example 7: L−1{(s+2)2+9s+2​}Solution:Recognize(s+a)2+b2s+a​,with a=2,b=3.f(t)=e−2tcos(3t).

Example 8: L−1(s+1)2+46​Solution:Write as:(s+1)2+223⋅2​.Use L−1{(s+a)2+b2b​}=e−atsin(bt).f(t)=3e−tsin(2t).

Example 9: L−1{s(s+1)(s+3)2s+7​}Solution:Partial fractions:s(s+1)(s+3)2s+7​=37​⋅s1​−25​⋅s+11​+61​⋅s+31​.Inverse gives:f(t)=37​−25​e−t+61​e−3t.

Example 10:L−1{s(s+2)21​}Solution:Partial fractions:s(s+2)21​=4s1​−4(s+2)1​−2(s+2)21​.Inverse transforms yield:f(t)=41​−41​e−2t−21​te−2t.

Example 11: L−1{(s+1)(s+3)s+4​}Solution:Partial fractions give:(s+1)(s+3)s+4​=34​⋅s1​−23​⋅s+11​+61​⋅s+31​.Thus:f(t)=34​−23​e−t+61​e−3t. 

Example 12: L−1{(s2+4)22s​}Solution:Use L{tsin(at)}=(s2+a2)22as​.For a=2, we have 2as=4s.Our numerator is 2s=21​(4s).  So:f(t)=21​tsin(2t).

Example 13: L−1{s(s+1)21​}Solution:Partial fractions:s(s+1)21​=s1​−s+11​−(s+1)21​.Inverse transforms give:f(t)=1−e−t−te−t.

Example 14: L−1{e−2s⋅s2+1s​}Solution:Time shift property: e−asF(s) u(t−a)f(t−a),where f=L−1{F}.Here:F(s)=s2+1s​⇒f(t)=cost.Therefore:L−1{e−2s⋅s2+1s​}=u(t−2)cos(t−2).

6.0Inverse Laplace Transform Calculation Step by Step

Using an Inverse Laplace Transform calculation with steps can be extremely helpful, especially when you need to solve complex transforms quickly. These calculators break down the steps and show the intermediate results for partial fractions and simplifications, making the process much easier to understand.

For instance, an online calculator will take your function in the Laplace domain and guide you through the partial fraction decomposition, finding the inverse transform of each term, and combining them at the end.

7.0Properties of Inverse Laplace Transform

Understanding the properties of the inverse Laplace transform can simplify the process of solving differential equations and analyzing systems. Some important properties include:

  1. Linearity:  If L−1{F1​(s)}=f1​(t) and L−1{F2​(s)}=f2​(t),then:  L−1{aF1​(s)+bF2​(s)}=af1​(t)+bf2​(t).
  2. Time Shifting: If L−1{F(s)}=f(t),then:  L−1{e−asF(s)}=(t−a)u(t−a).
  3. Frequency Shifting: IfL−1{F(s)}=f(t),then: L−1{F(s−a)}=eatf(t).
  4. Multiplication by tn−1: If L−1{F(s)}=f(t),then:  L−1{snF(s)​}=(n−1)tn−1​∗f(t).

8.0Related Questions on Inverse Laplace Transform

1. What is the Inverse Laplace Transform?

Ans: The Inverse Laplace Transform is a mathematical operation that transforms a function from the Laplace domain back into the time domain. If a function F(s) is the Laplace transform of a time-domain function f(t), then:

f(t)=L−1{F(s)}

It’s widely used in solving linear differential equations and analyzing systems in engineering and physics.


2. What is the formula for the Inverse Laplace Transform?

Ans: The general formula for the Inverse Laplace Transform is:

f(t)=L−1{F(s)}

While there’s no single formula for all functions, you can use specific known inverse Laplace formulas, such as:

 L−1{s1​}=1 L−1{s+a1​}=e−at L−1{s2+a21​}=sin(at)


3.  What is the Inverse Laplace Transform of s21​?Ans: The Inverse Laplace Transform of s21​ is:L−1{s21​}=tThis follows from the standard Laplace transform pair:L{t}=s21​.


4. What are the properties of the Inverse Laplace Transform?

Ans: Some key properties of the Inverse Laplace Transform include:

Linearity:    L−1{aF1​(s)+bF2​(s)}=af1​(t)+bf2​(t) Time Shifting:    L−1{e−asF(s)}=f(t−a)u(t−a) Frequency Shifting:    L−1{F(s−a)}=eatf(t) Multiplication bytn:    L−1{snF(s)​}=(n−1)tn−1​f(t)

These properties help simplify the process of calculating inverse transforms for various functions.


5. What are the most common Inverse Laplace Transform formulas?

Ans: Here are a few frequently used Inverse Laplace Transform formulas:

L−1{s1​}=1 L−1{s+a1​}=e−atL−1{s2+a21​}=asin(at)​ L−1{s2+2as+a21​}=e−at

Table of Contents


  • 1.0Inverse Laplace Transform Definition
  • 2.0Inverse Laplace Transform Formula
  • 3.0Inverse Laplace Transform Formula List
  • 4.0Inverse Laplace Transform by Partial Fraction
  • 5.0Solved Example of Inverse Laplace Transform
  • 6.0Inverse Laplace Transform Calculation Step by Step
  • 7.0Properties of Inverse Laplace Transform
  • 8.0Related Questions on Inverse Laplace Transform

Frequently Asked Questions

The Inverse Laplace Transform is mainly used to solve problems in the time domain after transforming them into the Laplace domain. In the Laplace domain, complex differential equations often become simpler algebraic equations. After solving them, the inverse Laplace transform is applied to return the solution to the time domain.

To find the Inverse Laplace Transform of a function F(s), you can: Use known Inverse Laplace Transform formulas and tables for common functions. Apply partial fraction decomposition for complex rational functions. Use the residue theorem or complex inversion formula for more complicated cases.

For complex functions, such as rational functions with higher-order polynomials in the denominator, you can: Factor the denominator and decompose the expression into simpler fractions using partial fraction decomposition. Then, use known inverse Laplace formulas for each simpler fraction. Combine the results for the final solution.

Yes, you can use Inverse Laplace Transform calculators to quickly and accurately find the inverse transform of complex functions. Many online calculators provide step-by-step solutions, including partial fraction decomposition and simplifications. These tools can be helpful for learning or for verifying your work in more complicated cases.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor
    • NEET 2025 Counselling

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO