• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE MAIN 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
    • ALLEN e-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Matrices and Determinants: Previous Year Questions with Solutions

Matrices and Determinants: Previous Year Questions with Solutions

1.0Introduction

Matrices and Determinants Previous Year Questions typically cover topics such as matrix operations (addition, multiplication, transpose), types of matrices (zero, identity, diagonal, symmetric), and properties of determinants. Common problem types include finding the inverse of a matrix, solving systems of linear equations using matrices, evaluating determinants, and applying Cramer's Rule. Examples include calculating the determinant of a 3×3 matrix, checking consistency of a system of equations, or finding the adjoint and inverse of a matrix. Solutions involve using standard matrix algebra rules, cofactor expansion, and determinant properties. Practicing these questions helps in developing strong algebraic manipulation skills and understanding the structure of linear equations.

2.0Matrices and Determinants Previous Year Questions for JEE with Solutions

JEE questions in Matrices and Determinants often test concepts related to matrix operations, types of matrices, properties of determinants, and their applications in solving systems of linear equations. Some common types of problems include:

  • Matrix Operations: Questions on addition, subtraction, multiplication, transpose, and properties like (AB)T=BTAT, and checking the existence of inverses.
  • Determinants: Problems involving calculation of determinants (2×2 and 3×3), using properties to simplify determinants, and evaluating them through cofactor expansion.
  • Inverse and Adjoint: Finding the adjoint of a matrix and using it to determine the inverse, especially for solving linear equations.
  • System of Linear Equations: Solving systems using matrices (matrix method), and checking consistency using the determinant (non-zero vs. zero).

These questions are designed to test both computational accuracy and understanding of underlying linear algebra principles.

Note: In the JEE Main Mathematics exam, you can typically expect 2 to 3 questions from the Matrices and Determinants chapter.

3.0Key Concepts to Remember – Matrices

1. Types of Matrices

  • Square Matrix: Rows = Columns
  • Diagonal Matrix: Non-zero elements only on the main diagonal
  • Scalar Matrix: Diagonal matrix with all diagonal elements equal
  • Identity Matrix (I): Diagonal elements = 1, others = 0
  • Zero Matrix: All elements are zero
  • Symmetric Matrix: A = AT
  • Skew-Symmetric Matrix: AT = –A

2. Matrix Operations

  • Addition/Subtraction: Only if matrices are of the same order
  • Multiplication: Use row-by-column rule; not commutative
  • Scalar Multiplication: Multiply every element by a scalar
  • Transpose: (AT)T=A,(AB)T=BTAT

3. Special Properties

  • (AB)C = A(BC) (Associative)
  • A(B + C) = AB + AC (Distributive)
  • AT A is always symmetric

4. Inverse of a Matrix

  • Only defined for square, non-singular matrices

A−1=det(A)1​adj(A)(for det(A)=0)

4.0Key Concepts to Remember – Determinants

1. Basic Determinant Evaluation

  • 2 × 2:

​ a b c d  ​ ​=ad−bc

  • 3×3: Use cofactor expansion or Sarrus Rule (if allowed)

2. Properties of Determinants

  • Swapping two rows/columns: sign changes
  • If two rows/columns are identical: determinant = 0
  • If a row/column is multiplied by k, determinant is multiplied by k

det(AT)=det(A)

3. Applications

  • Area of triangle using determinant:

 Area =21​​x1​x2​x3​​y1​y2​y3​​111​​

  • Solving system of equations:

Cramer’s Rule:

x=detAdetA1​​,y=detAdetA2​​,z=detAdetA3​​

4. Consistency of System

  • det(A)=0: Unique solution (consistent)
  • det(A) = 0: May be no solution or infinitely many (check further)

5.0JEE Mains Past Year Questions with Solutions on Matrices and Determinants

Previous Year Questions from Matrices 

1. Let A=[10​21​] and B = I + adj(A) + (adj A)2+…+ (adj A)10.  Then, the sum of all the elements of the matrix B is : 

(1) –110

(2) 22

(3) –88

(4) –124

Ans. (3)

Sol.  

 Sol. Adj(A)=[10​−21​]

(AdjA)2=[10​−41​]

(AdjA)10=[10​−201​]

B=[10​01​]+B=[10​−21​]+[10​−41​]+…+[10​−201​]

B=[110​−11011​]□ sum of elements of B=−88

2 Let A be a 2 × 2 symmetric matrix such that  A[11​]=[37​]and the determinant of A be 1. If A–1 = αA + βI, {} where I is an identity matrix of order 2 × 2, then α + β equals …..

Ans. (5)

Sol.

Let A=[ab​bd​]

[ab​bd​][11​]=[37​],ad−b2=1

a+b=3,b+d=7,(3−b)(7−b)−b2=1

21−10b=1→b=2,a=1,d=5

A=[12​25​],A−1=[5−2​−21​]

A−1=αA+βI

[5−2​−21​]

[α+β2α​2α5α+β​]

α=−1,β=6→α+β=5​

3. Let α ∈ (0, ∞) and A=​101​210​α02​​If det(adj(2A−AT)⋅adj(A−2AT))=28, then (detA)2 is equal to :

(1) 1

(2) 49

(3) 16

(4) 36

Ans. (3)

Sol.

adj(A−2AT)⋅(2A−AT)=28∣(A−2AT)(2A−AT)∣=24∣A−2AT∣⋅∣2A−AT∣=±16(A−2AT)T=AT−2A∣A−2AT∣=∣AT−2A∣⇒∣A−2AT∣2=16⇒∣A−2AT∣=±4​101​210​α02​​⇒AT= ​12α​010​102​​A−2AT=​101​210​α02​​−2​12α​010​102​​=​−1−31−2α​2−10​α−20−2​​1+3α=4⇒3α=3⇒α=1α=1∣A∣= ​10−1​213​1−1−4​​=−1−3=−4∣A∣2=16


4. Let αβ ≠ 0 and . If A= ​βα−β​ααα​3αβ2α​​,B= ​3α−α−2α​−975​3α−2α−2β​​,αβ=0 is the matrix of cofactors of the elements of A, then det(AB) is equal to :

(1) 343

(2) 125

(3) 64

(4) 216

Ans. (4)

Sol. Equating co-factor fo A21 

A21​=(2α2−3α)=α⇒α=0,2(accept 2α2−αβ=3α⇒α=2, β=1∣AB∣=∣A⋅cof(A)∣=∣A∣3A= ​12−1​222​314​​⇒∣A∣=6−2(9)+3(6)=6


5. If A is a square matrix of order 3 such that det(A) = 3 and det(adj(–4 adj(–3 adj(3 adj((2A)–1))))) = 2m3n, then m + 2n is equal to:

(1) 3

(2) 2

(3) 4

(4) 6

Ans. (3)

Sol.

∣A∣=3∣adj(−4adj(−3adj(3adj((2A)T))))∣=∣−4adj(−3adj(3adj(2A)T))∣2=46∣adj(−3adj(3adj(2A)T))∣2=212⋅312⋅∣adj(2A)T∣8212⋅312⋅324​adj(2A)T​8=212⋅336⋅∣(2A)−1∣16=212⋅336⋅∣2A∣161​=212⋅336⋅248∣detA∣161​=212⋅336⋅248⋅3161​=236320​=2−36⋅320

6. Let A=[21​−11​]. If the sum of the diagonal elements of A13 is 3n, then n is equal to ______. 

Ans. (7)

Sol.

A=[21​−11​]A2=[21​−11​][21​−11​]=[33​−30​]A3=[33​−30​][21​−11​]=[36​−6−3​]A4=[36​−6−3​][21​−11​]=[09​−9−9​]A5=[09​−9−9​][21​−11​]=[−99​−9−18​]A6=[−99​−9−18​][21​−11​]=[−270​0−27​]A7= ​−270−54​−0−2727​−27−27−27​​​36×2272−272​​37=3n⇒n=7

7. Let B= [11​35​] and A be a 2 × 2 matrix such that AB–1 = A–1. If BCB–1 = A and C4 + αC2 + βI = O, then 2β – α is equal to : 

(1) 16

(2) 2

(3) 8

(4) 10

Ans. (4)

Sol. BCB–1 = A 

⇒ (BCB–1) (BCB–1) = A.A

⇒ BCI CB–1 = A2

⇒ BC2B–1 = A2

⇒ B–1(BC2B–1)B = B–1(A.A)B

From equation (1)

C2 = A–1.A.B 

C2 = B

Also AB–1 = A–1

⇒ AB–1.A = A–1 A = I

⇒ A–1(AB–1A) =A–1I

B–1A = A–1 

Now characteristics equation of C2 is

|C2–λI| = 0

|B – λI| = 0

⇒​1−λ1​35−λ​​=0

⇒ (1 – λ) (5 – l) –3 = 0 ⇒ (λ2 – 6λ +5) – 3 = 0

⇒ λ2 – 6λ + 2 = 0

⇒ β2 – 6B + 2I = 0

⇒ C4 – 6C2 + 2I = 0

α = – 6

β = 2

∴ 2β – α = 4 + 6 = 10


8. If A= [2​−1​12​​],B= [11​01​],C=ABAT,X=ATC2A. then, det X is equal to :

(1) 243

(2) 729

(3) 27

(4) 891

Ans. (2)

Sol.

A= [2​−1​12​​] ⇒det(A)=3B= [11​01​]⇒det(B)=1Now C=ABAT⇒det(C)=(det(A))2×det(B)∣C∣=9Now ∣X∣=∣ATC2A∣=∣AT∣⋅∣C2∣⋅∣A∣

= |A|2 |C|2

= 9 x 81

= 729


9. Consider the matrix f(x)= ​cosxsinx0​−sinxcosx0​001​​.Given below are two statements :

Statement I: f(–x) is the inverse of the matrix f(x).

Statement II: f(x) f(y) = f(x + y).

In the light of the above statements, choose the correct answer from the options given below 

(1) Statement I is false but Statement II is true

(2) Both Statement I and Statement II are false

(3) Statement I is true but Statement II is false

(4) Both Statement I and Statement II are true

Ans. (4)

Sol.

f(−x)= ​cosx−sinx0​sinxcosx0​001​​f(x)⋅f(−x)= ​100​010​001​​=If(y)= ​cosysiny0​−sinycosy0​001​​f(x)⋅f(y)= ​cos(x+y)sin(x+y)0​−sin(x+y)cos(x+y)0​001​​

10. A= ​211​010​101​​Let , B = [B1, B2, B3], where B1, B2, B3 are column matrices, and AB1​= ​100​​,AB2​= ​300​​,AB3​= ​321​​If α = |B| and β is the sum of all the diagonal elements of B, then α3 + β3  is equal to _____.

Ans. (28)

Sol.

A= ​211​010​101​​,B=[B1​,B2​,B3​]B1​= ​x1​y1​z1​​​,B2​= ​x2​y2​z2​​​,B3​= ​x3​y3​z3​​​AB1​= ​211​010​101​​​x1​y1​z1​​​=​100​​x1​=1,y1​=−1,z1​=−1AB2​= ​211​010​101​​​x2​y2​z2​​​=​230​​x2​=2,y2​=1,z2​=−2AB3​= ​211​010​101​​​x3​y3​z3​​​=​321​​x3​=2,y3​=0,z3​=−1B= ​1−1−1​21−2​20−1​​α=∣B∣=3,β=1α3+β3=27+1=28

11. Let A be 3 x 3 real matrix such that A​101​​=2​101​​,A​−101​​=4​−101​​,A​110​​=2​110​​Then, the system (A−3I)​xyz​​=​123​​

(1) unique solution

(2) exactly two solutions

(3) no solution

(4) infinitely many solutions

Ans. (1)

Sol.-

A= ​x1​x2​x3​​y1​y2​y3​​z1​z2​z3​​​A​101​​=​202​​Given​x1​+z1​x2​+z2​x3​+z3​​​=​202​​∴x1​+z1​=2.....(2)x2​+z2​=0......(3)x3​+z3​=0......(4)A= ​−101​​,Given  ​−x1​+z1​−x2​+z2​−x3​+z3​​​=​404​​⇒−x1​+z1​=4.......(5)−x2​+z2​=0.......(6)−x3​+z3​=4.....(7)A= ​010​​,Given  ​y1​y2​y3​​​=​020​​∴y1​=0,y2​=2,y3​=0∴from (2), (3), (4), (5), (6), and (7):x1​=3,x2​=0,x3​=−1y1​=0,y2​=2,y3​=0z1​=−1,z2​=0,z3​=3∴A= ​33−1​020​−103​​∴(A−3I)​xyz​​=​−123​​​0−10​0−10​−100​​​xyz​​=​−123​​⇒​−z−y−x​​=​1−2−3​​⇒[z=−1],[y=−2],[x=−3]22024=9m+4,m←even29m+4=16⋅(23)3m≡16(mod9)

Previous Year Questions from Determinants

1. If the system of equations

x+(2​sinα)y+(2​cosα)z=0x+(cosα)y+(sinα)z=0x+(sinα)y−(cosα)z=0

has a non-trivial solution, then α∈(0,2π​) is equal to :

(1)43π​(2)247π​(3)245π​(4)2411π​

Ans. (3)

Sol.

​111​2​sinαsinαcosα​2​cosα−cosαsinα​​=0⇒1−2​sinα(sinα+cosα)+2​cosα(cosα−sinα)=0⇒1+2​cos2α−2​sin2α=0cos2α−sin2α=−2​1​cos(2α+4π​)=−21​2α+4π​=2nπ±32π​α+8π​=nπ±3π​n=0,x=3π​−8π​=245π​

2. If the system of equations 

11x+y+λz=−52x+3y+5z=38x−19y−39z=μ

has infinitely many solutions, then λ4 – µ is equal to : 

(1) 49

(2) 45 

(3) 47

(4) 51 

Ans. (3)

Sol.

11x+y+λz=−52x+3y+5z=38x−19y−39z=μD= ​1128​13−19​λ5−39​​=0⇒11(−117+95)−1(−78−40)+λ(−38−24)⇒11(−22)+118−λ(62)=0⇒−242+118−62λ=0⇒62λ=118−242λ=62−124​=−2D1​= ​−53μ​13−19​−25−39​​=0⇒−5(−117+95)−1(−117−5μ)−2(−57−3μ)=0⇒5(−22)+117+5μ+114+6μ=0⇒11μ=−110−231=−341⇒μ=−31λ4−μ=(−2)4−(−31)=16+31=47

3. For α, β ∈ R and a natural number n, let An​= ​r2r3r−2​123​2n2+α​n2−β2n(3n−1)​​​. Then 2A10 – A8 is 

(1) 4α + 2β

(2) 2α + 4β

(3) 2n

(4) 0

Ans. (1)

Sol.

Ar​=​r2r3r−2​123​2n2​+αn2−β2n(3n−1)​​​2A10​−A8​=​204056​123​2n2​+αn2−β2n(3n−1)​​​−​81622​123​2n2​+αn2−β2n(3n−1)​​​⇒​122434​123​2n2​+αn2−β2n(3n−1)​​​⇒​00−2​123​2n2​+αn2−β2n(3n−1)​​​⇒−2((n2−β)−(n2+2α))⇒−2(−β−2α)⇒4α+2β

4. Let αβγ = 45 ; α,β, γ ∈ R. If x(α, 1, 2) +  y(1, β, 2) + z(2, 3, γ) = (0, 0, 0) for some x, y, z ∈ R, xyz ≠ 0 , then 6α + 4β + γ is equal to_______  

Ans. (55)

Sol.

αβγ=45,α,β,γ∈Rx(α,1,2)+y(1,β,2)+z(2,3,γ)=(0,0,0)x,y,z∈R,xyz=0⇒αx+y+2z=0x+βy+3z=02x+2y+γz=0xyz=0⇒non-trivial​α12​1β2​23γ​​=0⇒α(βγ−6)−1(γ−6)+2(2−2β)=0⇒αβγ−6α−γ+6+4−4β=0⇒6α+4β+γ=55


5. Let the system of equations x + 2y +3z = 5, 2x + 3y + z = 9, 4x + 3y + λz = μ have infinite number of solutions. Then λ + 2μ is equal to :

(1) 28

(2) 17

(3) 22

(4) 15

Ans. (2)

Sol.

x+2y+3z=52x+3y+z=94x+3y+λz=μFor infinite solutions, the following must hold:Δ=Δ1​=Δ2​=Δ3​=0Δ= ​124​233​31λ​​=0⇒λ=−13Δ1​= ​59μ​233​31−13​​=0⇒μ=15Δ2​= ​124​5915​31−13​​=0Δ3​= ​124​233​5915​​=0forλ=−13, μ=15,the system of equations has infinite solutions.⇒λ+2μ=−13+30=17


6. The values of α, for which ​112α+3​23​31​3α+1​α+23​α+31​0​​=0, lie in the interval

(1)(–2,1)(2)(–3,0)(3)(−23​, 23​)(4)(0,3)

Ans. (2)

Sol.

​112α+3​23​13α+1​α+23​α+10​​=0⇒(2α+3)​23​1​α+23​α+1​​−(3α+1)​11​α+23​α+1​​=0⇒(2α+3)⋅67α​+(3α+1)⋅6−7​=0⇒2α2+3α+3α+1=0⇒2α2+6α+1=0⇒α=2−3+7​​,2−3−7​​


7. Consider the system of linear equations x + y + z = 5, x + 2y +λ2z = 9, x + 3y +λz = μ, where λ, μ ∈ R. Then, which of the following statement is NOT correct?

(1) System has infinite number of solution if λ= 1  and μ =13

(2) System is  inconsistent if λ = 1 and μ  ≠ 13

(3) System is  consistent if λ ≠ 1 and μ = 13

(4) System has unique solution if λ ≠ 1 and μ ≠ 13

Ans. (4)

Sol.

​111​123​1λ2λ​​=0⇒2λ2−λ−1=0λ=1,−21​​123​1λ2λ​59μ​​=0⇒μ=13Infinite solution λ=1 μ=13For unique soln λ=1For no soln λ=1 μ=13Ifλ=1andμ=13Considering the case when λ=−21​ and μ=13 this will generate no solution case


8. If then f(x)=​2cos4x3+2cos4x2cos4x​2sin4x2sin4x3+2sin4x​3+sin22xsin22xsin22x​​⇒51​f′(0) is equal to ______

(1) 0

(2) 1

(3) 2

(4) 6

Ans. (1)

Sol.

​2cos4x3+2cos4x2cos4x​2sin4x2sin4x3+2sin4x​3+sin22xsin22xsin22x​​Rowoperations:R2​→R2​−R1​,R3​→R3​−R1​⇒​2cos4x30​2sin4x03​3+sin22x−3−3​​

f(x) = 45

f'(x)=0

9. If the system of linear equations

x−2y+z=−42x+αy+3z=53x−y+βz=3

has infinitely many solutions, then 12α + 13β is equal to 

(1) 60

(2) 64

(3) 54

(4) 58

Ans. (4)

Sol.  

D=​123​−2α−1​13β​​=1(αβ+3)+2(2β−9)+1(−2−3α)=αβ+3+4β−18−2−3α=αβ−3α+4β−17.......(1)D1​=​−453​−2α−1​13β​​=0D2​=​123​−453​13β​​=0⇒1(5β−9)+4(2β−9)+1(6−15)=05β−9+8β−36−9=013β=54⇒β=1354​put in (1)1354​α−3α+4(1354​)=171354α​−1339α​+13216​=171315α+216​=17⇒15α=5⇒α=31​Now, 12α+13β=12⋅31​+13⋅1354​=4+54=58

Table of Contents


  • 1.0Introduction
  • 2.0Matrices and Determinants Previous Year Questions for JEE with Solutions
  • 3.0Key Concepts to Remember – Matrices
  • 4.0Key Concepts to Remember – Determinants
  • 5.0JEE Mains Past Year Questions with Solutions on Matrices and Determinants
  • 5.1Previous Year Questions from Matrices 
  • 5.2Previous Year Questions from Determinants

Frequently Asked Questions

You can generally expect 2 to 3 questions from this chapter in JEE Main.

Focus on Matrix operations and transpose properties Inverse of 2×2 matrices using adjoint and determinant Cofactor and determinant evaluation Properties of determinants Cramer’s Rule for solving linear equations

Yes, they are very common and frequently appear in both JEE Main and Advanced. Mastering cofactor expansion and simplification using determinant properties is essential.

Use Cramer’s Rule for small systems and the Matrix Inversion Method when given a square coefficient matrix (usually 2 × 2 or 3 × 3).

A square matrix is invertible if its determinant ≠ 0. Such matrices are called non-singular.

Absolutely. Properties like row operations, factorizing rows/columns, and converting to triangular form can help simplify complex-looking 3 × 3 determinants in seconds.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key
    • JEE Advanced 2025 Answer Key
    • JEE Advanced Rank Predictor

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO