• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
  • NEW
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Multiplication of A Vector

Multiplication of a Vector

In mathematics and physics, vector multiplication is a key operation used to analyze motion, force, and direction. It involves multiplying a vector either by a scalar (a number) or another vector. The result depends on the type of multiplication: scalar multiplication stretches or shrinks the vector, while vector multiplication yields a new vector or a scalar based on the rule used.

1.0Multiplication of Vectors Definition

Multiplication of a vector refers to scaling a vector by a number (scalar) or combining it with another vector using dot product or cross product. The operation you use determines whether the result is a scalar or another vector.

2.0Multiplication of a Vector by a Scalar (Number)

When you perform the multiplication of a vector by a scalar, you are changing the magnitude of the vector but not its direction (unless the scalar is negative, which reverses the direction).

Multiplication of a Vector by a Number Formula

If A=ai^+bj^​, and k is a scalar, then:

k⋅A=k(ai^+bj^​)=(ka)i^+(kb)j^​

This is also called scalar multiplication of a vector.

3.0How to Multiply Vector Components

To multiply a vector by a number:

  1. Multiply each component of the vector by the scalar.
  2. Keep the same direction (or reverse it if the scalar is negative).
  3. The result is another vector.

Example:
Given A=2i^−3j^​ and scalar k = -2

k⋅A=−2(2i^−3j^​)=−4i^+6j^​

This is multiplication of vector components by a scalar.

4.0What Happens When a Vector Is Multiplied by a Scalar?

  • The magnitude of the vector changes.
  • The direction remains the same if scalar is positive.
  • The direction reverses if scalar is negative.
  • The vector becomes a zero vector if multiplied by 0.

5.0Multiplication of Vectors by Another Vector

There are two types of vector-by-vector multiplication:

1. Dot Product (Scalar Product)

  • Result: Scalar
  • Formula:

A⋅B=∣A∣∣B∣cos(θ)

  • Application: Work done, projection

2. Cross Product (Vector Product)

  • Result: Vector
  • Formula:

A×B=∣A∣∣B∣sin(θ)n^ 

where It is a unit vector perpendicular to both A and B.

  • Application: Torque, rotational motion

6.0What Is the Rule for Vector Multiplication?

Type of Multiplication

Rule

Result

Scalar × Vector

Multiply scalar to each vector component

Vector

Vector · Vector (Dot)

Multiply magnitudes and cosine of angle

Scalar

Vector × Vector (Cross)

Multiply magnitudes and sine of angle, direction via right-hand rule

Vector

7.0Multiplication of Vectors Example

Example 1: Scalar Multiplication of A=3i^+4j^​,k=2

Solution: 

A=2(3i^+4j^​)=6i^+8j^​

Example 2: Dot Product of A=⟨2,3⟩,B=⟨4,−1⟩ 

Solution: 

A⋅B=(2)(4)+(3)(−1)=8−3=5

Example 3: Cross Product of A=i^+2j^​,B=3i^+j^​

Solution: 

A×B=​i^13​j^​21​k^00​​=(0)i^−(0)j^​+(1⋅1−2⋅3)k^=−5k^

8.0JEE Advanced-Level Questions & Solutions on Multiplication of Vectors

Q1. Let A=i^+2j^​+k^B=2i^−j^​+k^, and C=ai^+bj^​+ck^. If the vectors A,B,C are coplanar, find the relation between a, b, c.

Solution: 

Use the scalar triple product condition:

A⋅(B×C)=0

Evaluate:

​B⊗C⊗=​i^2a​j^​−1b​k^1c​​B×C=((−1)(c)−(1)(b))i^−((2)(c)−(1)(a))j^​+((2)(b)−(−1)(a))k^B×C=(−c−b)i^−(2c−a)j^​+(2b+a)k^​

Now dot with A:

=−5c + a + b(1)(-c - b) + 2(-2c + a) + 1(2b + a) 

= - c - b - 4c + 2a + 2b + a = -5c + a + b 

Set equal to 0:

a + b - 5c = 0 

Answer: ca + b = 5c

Q2. Let A and B be A=3i^+4j^​,B=5i^. Find the projection of A on B.

Solution:

 Projection of A on B=∣BB∣A⋅B​

 Projection =∣B∣​A⋅B​=53(5)​=3

Answer: 3

Q3. Find angle between two vectors A and B. A=2i^+j^​+2k^,B=i^−j^​+k^

Solution:

A⋅B=2(1)+1(−1)+2(1)=2−1+2=3

∣A∣=4+1+4​=9​=3,∣B∣=1+1+1​=3​

Using formula:

cosθ=∣A∣∣B∣A⋅B​

cosθ=33​3​=3​1​⇒θ=cos−1(3​1​)

Answer: θ=cos−1(3​1​)

Q4. Find area of parallelogram using cross product of  u=3i^−j^​+k^,v=i^+2j^​−2k^.

Solution:

 Area =∣u×v∣

​u×v=​i^31​j^​−12​k^1−2​​⇒u×v=(−1)(−2)−(1)(2)i^−[3(−2)−(1)(1)]j^​+[3(2)−(−1)(1)]k^⇒u×v=(2−2)i^+(6−1)j^​+(6+1)k^⇒∣u×v∣=0i^+5j^​+7k^⇒∣u×v∣=02+25+49​=74​​ 

Area: 74​

Q5. Find shortest distance between:

​L1​:r=i^+2j^​+k^+λ(i^+j^​),L2​:r=2i^+j^​+2k^+μ(2i^−j^​+k^)​

Solution:

Let:

  • a1​​=i^+2j^​+k^
  • a2​​=2i^+j^​+2k^
  • b1​=i^+j^​,b2​=2i^−j^​+k^

Solution: 

​a2​​−a1​​=i^−j^​+k^b1​​×b2​​=​i^12​j^​1−1​k^01​​b1​​×b2​​=(1)(1)−(0)(−1)i^−(1)(1)−(0)(2)j^​+(1)(−1)−(1)(2)k^b1​​×b2​​=i^−j^​−3k^​

Using formula of shortest distance between two lines:

d=∣b1​​×b2​​∣∣(a2​​−a1​​)⋅(b1​​×b2​​)∣​

​​d=∣i^−j^​−3k^∣∣(i^−j^​+k^)⋅(i^−j^​−3k^)∣​d=1+1+9​∣1+1−3∣​​d=11​∣−1∣​d=11​1​​

Answer: 11​1​

Q6. Find a unit vector perpendicular to both A=2i^+3j^​−k^,B=i^−j^​+4k^ 

Solution:

Unit vector = ∣A×B∣A×B​

​AB=​i^21​j^​3−1​k^−14​​A×B=((3)(4)−(−1)(−1))i^−((2)(4)−(−1)(1))j^​+((2)(−1)−(3)(1))k^A×B=(12−1)i^−(8+1)j^​+(−2−3)k^A×B=11i^−9j^​−5k^​

​⇒ Unit Vector =121+81+25​11i^−9j^​−5k^​=227​11i^−9j^​−5k^​​

Answer: 227​11i^−9j^​−5k^​

Q7. If A=i^+2j^​,B=2i^−3j^​​,find a vector C such that:A⋅C=0,B⋅C=0

Solution: 

Let C=xi^+yj^​+zk^

Then,

​A⋅CB⋅C=x+2y=0⇒x=−2yB⋅C=2x−3y=0⇒2(−2y)−3y=−4y−3y=−7y=0⇒y=0⇒x=0​ 

So

C=zk^

Answer: Any vector along .

Q8: What is the multiplication of vectors formula?

  • Scalar:k⋅A=kAx​i^+kAy​j^​
  • Dot:A⋅B=∣A∣∣B∣cosθ
  • Cross:A×B=∣A∣∣B∣sinθn^

9.0Practice Questions on Vector Multiplication

  1. Multiply A=(2,−1)byscalar−3.
  2. Find the dot product of A=(4,2)andB=(−1,5).
  3. Calculate A×BwhereA=(0,2,1),B=(3,1,4).
  4. If V=5i^−j^​,find0⋅V.
  5. What happens to a vector when multiplied by -1?

Table of Contents


  • 1.0Multiplication of Vectors Definition
  • 2.0Multiplication of a Vector by a Scalar (Number)
  • 3.0How to Multiply Vector Components
  • 4.0What Happens When a Vector Is Multiplied by a Scalar?
  • 5.0Multiplication of Vectors by Another Vector
  • 6.0What Is the Rule for Vector Multiplication?
  • 7.0Multiplication of Vectors Example
  • 8.0JEE Advanced-Level Questions & Solutions on Multiplication of Vectors
  • 9.0Practice Questions on Vector Multiplication

Frequently Asked Questions

It scales the vector’s magnitude by the scalar and possibly reverses its direction if the scalar is negative.

Use scalar multiplication for resizing, dot product for projection, and cross product for a perpendicular vector.

The result is a zero vector.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor
    • NEET 2025 Counselling

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO