• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE 2025
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
    • ALLEN e-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Vector Algebra previous year questions with solutions

Vector Algebra Previous Year Questions with Solutions

1.0Introduction

Vector Algebra Previous Year Questions typically cover topics like vector addition, scalar multiplication, dot product, cross product, and applications of vectors in geometry and physics. Examples include finding the angle between two vectors, determining the magnitude of a vector, proving vector identities, and solving problems related to displacement and velocity. Solutions involve applying vector formulas and properties such as vector projection, triple products, and the geometric interpretation of vectors. Practicing these questions enhances understanding of vector operations and improves problem-solving efficiency, helping students gain confidence and prepare effectively for exams.

2.0Vector Algebra Previous Year Questions for JEE with Solutions

JEE questions in Vector Algebra often test concepts related to vector operations, scalar and vector products, and geometric interpretations of vectors. Some common types of problems include:

  • Basic Vector Operations: Questions on vector addition, subtraction, scalar multiplication, and finding unit vectors.
  • Dot and Cross Products: Problems involving the angle between two vectors, projection of one vector on another, and checking perpendicularity or parallelism using dot or cross product.
  • Applications in Geometry: Questions related to position vectors, section formula, finding the area of a triangle using cross product, and vector equations of lines.

These questions are aimed at testing conceptual clarity, vector manipulation skills, and geometric reasoning.

Note: In the JEE Main Mathematics exam, you can generally expect 2 to 3 questions from the Vector Algebra chapter.

3.0JEE Questions in Vector Algebra: Key Concepts

1. Basic Vector Operations

  • Vector from point A(x1​,y1​,z1​) to B(x2​,y2​,z2​):

 AB=(x2​−x1​)i^+(y2​−y1​)j^​+(z2​−z1​)k^

  • Magnitude of vector:

 ∣a∣=a12​+a22​+a32​​

  • Direction cosines of a vector:

  cosα=∣a∣a1​​,  cosβ=∣a∣a2​​,  cosγ=∣a∣a3​​

  • Relation:

cos2α+cos2β+cos2γ=1

2. Scalar (Dot) Product

  • If , then vectors are perpendicular.

a⋅b=a1​b1​+a2​b2​+a3​b3​ a⋅b=∣a∣∣b∣cosθIfa⋅b=0,then vectors are perpendicular.

3. Vector (Cross) Product

  • If , vectors are parallel. a×b= ​i^a1​b1​​j^​a2​b2​​k^a3​b3​​​∣a×b∣=∣a∣∣b∣sinθ  Ifa×b=0, vectors are parallel.

4. Scalar Triple Product (STP)

  • Volume of a parallelepiped
  • If STP = 0 → vectors are coplanar
  • a⋅(b×c)=Volume of a parallelepipedIfSTP=0⇒vectors are coplanar

5. Vector Triple Product Identity

a×(b×c)=(a⋅c)b−(a⋅b)c 

6. Section Formula (Vectors)

  • If P divides in ratio m:n,
  • Midpoint:

If P divides AB in ratio m:n, OP=m+nmB+nA​ Midpoint:  M=2A+B​

7. Collinearity of Vectors

  • Vectors a,b are collinear if:

a=kb

or

a×b=0

8. Vector Equation of a Line 

 Through point a,parallel to b: r=a+λbThrough two points a,b: r=a+λ(b−a)

9. Angle Between Two Vectors

cosθ=∣a∣∣b∣a⋅b​sinθ=∣a∣∣b∣∣a×b∣​

10. Area & Volume

Area of triangle formed by vectors a,b:A=21​∣a×b∣Volume of parallelepiped formed by a,b,c:V=∣a⋅(b×c)∣

11. Coplanarity Condition

 Vectors a, b, c are coplanar if:  a ⋅ (b×c)=0 

12. Shortcuts & Tricks

  • If three points A, B, C are collinear:

AB×AC=0

  • If point lies on a line:
  • Substitute in vector form and satisfy the equation.

4.0JEE Mains Past Year Questions with Solutions on Vector Algebra 

1. If λ > 0, let θ be the angle between the vectors a=i^+λj^​−3k^ and b=3i^−j^​+2k^. If the vectors a+b and a−b are mutually perpendicular, then the value of (14 cos θ)2 is equal to 

(1) 25

(2) 20

(3) 50

(4) 40

Ans. (1)

Solution:

(a+b)⋅(a−b)=0,λ>0∣a∣2−∣b∣2=0⇒1+λ2+9=9+1+4cosθ=∣a∣∣b∣a⋅b​=14​⋅14​3−λ−6​⇒λ=214cosθ=3−8=−5⇒(14cosθ)2=25

2. Let a unit vector which makes an angle of 60° with 2i+2j​−k and an angle of 45° with i−k be C. Then C=(32​​)i−(21​)k is:

(1)32​​i+32​1​j​−21​k(2)(21​i+32​1​j​+(322​​)k)(3)(3​1​+21​)i+(3​1​−32​1​)j​+(3​1​⋅32​​)k(4)32​​i−21​k

Ans. (4)

Solution: 

C=C1​i+C2​j​+C3​kC12​+C22​+C32​=1C⋅(2i+2j​−k)=∣C∣∣v∣cos60∘2C1​+2C2​−C3​=23​C1​−C3​=1C1​+2C2​=21​C1​=32​​+21​,C2​=−32​1​,C3​=32​​−21​AB=i+2j​−7k,BC=ai+bj​+ckandAC=6i+dj​−2k,d>0


3. Let ABC be a triangle of area 152​ and the vectors AB=i^+2j^​−7k^,BC=ai^+bj^​+ck^,AC=6i^+dj^​−2k^,d>0.,d>0. Then the square of the length of the largest side of the triangle ABC is

Ans. (54)

Solution: 

the square of the length of the largest side of the triangle ABC

Area=21​​i^ j^​ k^1 2 −76 d −2​​=152​=21​[(−4+7d)i^−j^​(−2+42)+k^(d−12)]=21​[(7d−4)i^+40j^​+(d−12)k^]⇒Magnitude=21​(7d−4)2+402+(d−12)2​=152​⇒(7d−4)2+1600+(d−12)2=1800⇒49d2−56d+16+1600+d2−24d+144=1800⇒50d2−80d+1760=1800⇒50d2−80d−40=0⇒5d2−8d−4=0⇒5d2−10d−2d−4=0⇒5d(d−2)+2(d−2)=0⇒(5d+2)(d−2)=0⇒d=2ord=−52​⇒d>0⇒d=2Now solve for vectorBC:BC=AC−AB=(6−1)i^+(2−2)j^​+(−2+7)k^=5i^+0j^​+5k^So comparingBC=ai^+bj^​+ck^:a+1=6⇒a=5,b+2=2⇒b=0,c−7=−2⇒c=5Length of sides∣AB∣=12+22+(−7)2​=1+4+49​=54​∣BC∣=52+02+52​=25+25​=50​∣AC∣=62+22+(−2)2​=36+4+4​=44​


4. Let a=i^−3j^​+7k^,b=2i^−j^​+k^ and c be a vector such that (a+2b)×c=3(c×a). If a⋅c=130, then b⋅c is equal to __________.

Ans. (30)

Solution: 

(a+2b)×c=3(c×a)(2b+4a)×c=0c=λ(4a+2b)=λ(8i^−14j^​+30k^)a⋅c=1308λ+42λ+210λ=130λ=21​c=4i^−7j^​+15k^b⋅c=8+7+15=30


5. Let a=2i^+j^​−k^,b=((a×(i^+j^​))×i^)×i^. Then the square of the projection of a on b is :

(1)51​(2)2(3)31​(4)32​

Ans. (2)

Solution: 

a×(i^+j^​)= ​i^21​j^​11​k^−10​​=i^−j^​+k^((a×(i^+j^​))×i^)=k^+j^​(((a×(i^+j^​))×i^)×i^)=j^​−k^projection of a on b=∣b∣a⋅b​=2​1+1​=2​


6. Let a=4i^−j^​+k^,b=11i^−j^​+k^,c be a vector such that (a+b)×c=c×(−2a+3b). If (2a+3b)⋅c=1670, then ∣c∣2 is equal to:

(1) 1627

(2) 1618

(3) 1600

(4) 1609

Ans. (2)

Solution: 

(a+b)×c=c×(−2a+3b)=0(a+b)×c+(2a−3b)×c=0⇒(a+b)−2a+3b)×c=0⇒c=λ(4b−a)=λ(44i^−4j^​+4k^−4i^+j^​−k^)=λ(40i^−3j^​+3k^)(8i^−2j^​+2k^+33i^−3j^​+3k^)⋅(40i^−3j^​+3k^)=1670(4i^−5j^​+5k^)⋅(40i^−3j^​+3k^)λ=1670⇒(1640+15+15)λ=1670⇒λ=1⇒c=40i^−3j^​+3k^⇒∣c∣2=1600+9+9=1618​


7. Let a=2i^+αj^​+k^,b=−i^+k^,c=βj^​−k^ where α and β are integers and αβ = –6. Let the values of the ordered pair (α, β) for which the area of the parallelogram of diagonals a+b and b+c is 21​2, be (α1, β1) and (α2, β2). Then α12​+β12​ – α2β2 is equal to 

(1) 17

(2) 24

(3) 21

(4) 19

Ans. (4)

Solution: 

Area of parallelogram=21​∣d1​​×d2​​∣A=21​∣(a+b)×(b+c)∣=221​​so,a+b=i^+αj^​+2k^b+c=−i^+βj^​(a+b)×(b+c)= ​i^1 α 2−1 β 0​j^​ k^​=i^(−2β)−j^​(2)+k^(β+α)=−2βi^−2j^​+(β+α)k^∣(a+b)×(b+c)∣=4β2+4+(β+α)2​=21​⇒4β2+4+α2+β2+2αβ=21⇒α2+5β2+2αβ=17and αβ=−6α=−3,β=2⇒(α1​,β1​)=(−3,2)α=3,β=−2⇒(α2​,β2​)=(3,−2)α12​+β12​−α2​β2​=9+4+6=19​


8. The position vectors of the vertices A, B and C of a triangle are 2i^−3j^​+3k^,2i^+2j^​+3k^,and−i^+j^​+3k^ respectively. Let I denotes the length of the angle bisector AD of ∠BAC where D is on the line segment BC, then 2l2 equals: 

1) 49

(2) 42

(3) 50

(4) 45

Ans. (4)

Solution: 

AB = 5

AC = 5

 position vectors of the vertices A, B and C of a triangle

D is midpoint of BC

D=(21​,23​,3)l=(2−21​)2+(−3−23​)2+(3−3)2​=(23​)2+(−29​)2​=49​+481​​=490​​=245​​2l2=45​


9. Let a=i^+2j^​+k^,b=3(i^−j^​+k^). Let c be the vector such that a×c=b and a⋅c=3.

 Solution: 

a⋅[(c×b)−b−c]=a⋅(c×b)−a⋅b−a⋅c…..(i)given,a×c=b(a×c)⋅b=∣b∣2=27⇒a⋅(c×b)=27……(ii)a⋅b=3−6+3=0…..(iii)a⋅c=3…..(iv)a⋅[(c×b)−b−c]=27−0−3=24​

10. Let a unit vector u^=xi^+yj^​+zk^ make angles 2π​,3π​ and 32π​with the vectors 2​1​i^+2​1​k^, 2​1​i^+2​1​j^​, 2​1​j^​+2​1​k^ respectively. If v=2​1​i^+2​1​j^​+2​1​k^,

then ∣u^−v∣2 is equal to

(1)211​(2)25​(3)9(4)7Ans. (2)

Solution: 

Unit vector u^=xi^+yj^​+zk^β​1​=2​1​i^+2​1​k^,β​2​=2​1​i^+2​1​j^​, β​3​=2​1​j^​+2​1​k^Now angle between u^β​1​=2π​u^⋅β​1​=0 ⇒2​x​+2​z​=0 ⇒x+z=0……(i)u^β​2​3π​:u^⋅β​2​=∣u^∣∣β​2​∣cos3π​⇒2​y​+2​z​=21​⇒y+z=2​1​…..(ii)u^β​3​32π​:u^⋅β​3​=∣u^∣∣β​3​∣cos32π​⇒2​x​+2​y​=−21​⇒x+y=−2​1​…….(iii)from equation (i), (ii) and (iii) we get x=−2​1​,y=0,z=2​1​Thus u^−v=−2​1​i^+2​1​k^−(2​1​i^+2​1​j^​+2​1​k^)=−2​2​i^−2​1​j^​∴∣u^−v∣2=(24​+21​​)2=25​


11. Let a=i^+αj^​+βk^,α,β∈R. Let a vector b be such that the angle between a and b is 4π​ and ∣b∣=6, If a⋅b=32​, then the value of (α2+β2)∣a×b∣2 is equal to 

(1) 90

(2) 75

(3) 95

(4) 85

Ans. (1)

Solution: 

∣b∣=6,∣a∣⋅∣b∣cosθ=32​⇒a⋅b=18∣a∣2=6Also 1+α2+β2=6α2+β2=5 to find (α2+β2)⋅∣a∣2⋅∣b∣2⋅sin2θ=(5)(6)(6)⋅(21​)=90​


12. Let a and b be two vectors such that and ∣a∣=1,∣b∣=4,and a⋅b=2. If c=(2a×b)−3b and the angle between b and c is α, then 192sin2α is equal to______

Ans. (48)

Solution: 

b⋅c=(2a×b)⋅b−3∣b∣2∣b∣∣c∣cosα=−3∣b∣2⇒∣c∣cosα=−12,as ∣b∣=4a⋅b=2⇒cosθ=21​⇒θ=3π​∣c∣2=∣(2a×b)−3b∣2=4∣a×b∣2+9∣b∣2=64⋅43​+144=192∣c∣2cos2α=144⇒192cos2α=144⇒192sin2α=48​


Table of Contents


  • 1.0Introduction
  • 2.0Vector Algebra Previous Year Questions for JEE with Solutions
  • 3.0JEE Questions in Vector Algebra: Key Concepts
  • 4.0JEE Mains Past Year Questions with Solutions on Vector Algebra 

Frequently Asked Questions

Typically, 1 to 2 questions are asked in JEE Main each year from Vector Algebra. They are often formula-based or involve basic vector identities.

Focus on: Dot product and cross product Scalar triple product Vector projection and component Angle between two vectors Coplanarity and collinearity of vectors

Yes. In JEE Advanced, questions are more conceptual, including vector geometry, projections, and 3D reasoning.

Yes. Vector projection often appears in conceptual problems involving geometry and forces.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key
    • JEE Advanced 2025 Answer Key
    • JEE Advanced Rank Predictor

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO