Home
Class 11
MATHS
[" (A) "(4,1)],[" fMisthe foot of the pe...

[" (A) "(4,1)],[" fMisthe foot of the perpendicular from a point "P" of a parabola "y^(2)=4ax" to its directrix and SPM is an "],[" yuitural triangle,where "S" is the focus,then "SP" is equal to- "]

Promotional Banner

Similar Questions

Explore conceptually related problems

M is the foot of the perpendicular from a point P on a parabola y^(2)=4ax to its directrix and SPM is an equilateral triangle,where S is the focus.Then find SP.

M is the foot of the perpendicular from a point P on a parabola y^2=4a x to its directrix and S P M is an equilateral triangle, where S is the focus. Then find S P .

M is the foot of the perpendicular from a point P on a parabola y^2=4a x to its directrix and S P M is an equilateral triangle, where S is the focus. Then find S P .

M is the foot of the perpendicular from a point P on a parabola y^2=4a x to its directrix and S P M is an equilateral triangle, where S is the focus. Then find S P .

M is the foot of the perpendicular from a point P on a parabola y^2=4a x to its directrix and S P M is an equilateral triangle, where S is the focus. Then find S P .

If M is the foot of the perpendicular from a point P on a parabola to its directix and SPM is an equilateral triangle where S is the focus then SP=

M is the foot of the perpendicular from a point P on the parabola y^(2)=8(x-3) to its directrix and S is an equilateral triangle, the length of side of the triangle is

If Q is the foot of the perpendicular from a point p on the parabola y^(2)=8(x-3) to its directrix. S is an equilateral triangle then find the lengh of side of the triangle.

If Q is the foot of the perpendicular from a point p on the parabola y^(2)=8(x-3) to its directrix. S is an equilateral triangle then find the lengh of side of the triangle.