Home
Class 12
MATHS
int(x^(4)+1)/(x^(2)+1)dx=pi...

int(x^(4)+1)/(x^(2)+1)dx=pi

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(a)(1)/(1+4x^(2))dx=(pi)/(8) , then a =

If int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8 , then a=

If int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8 , then a=

If int_0^(a) (1)/(1+4x^(2)) dx = pi/8 then a =

int_(0)^(1)x.sqrt((1-x^(2))/(1+x^(2)))dx=(pi-2)/(4)

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

The value of int_(0)^(oo)(dx)/(1+x^(4)) is (a) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x) (b) (pi)/(2sqrt(2))( c) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x^(4))(d)(pi)/(sqrt(2))