Home
Class 11
MATHS
Show that (x^3+x^2+x+1)/(x^3-x^2+x-1)=(x...

Show that `(x^3+x^2+x+1)/(x^3-x^2+x-1)=(x^2+x+1)/(x^2-x+1)`,is not possible for any `x epsilon R`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (x^(3)+x^(2)+x+1)/(x^(3)-x^(2)+x-1)=(x^(2)+x+1)/(x^(2)-x+1) is not possible for any x varepsilon R.

((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))=

show that |[1,x,x^2],[x^2,1,x],[x,x^2,1]| = (1-x^3)^2

L_(x rarr1)[(x-1)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+x)]

|{:(3x^2,3x,1),(x^2+2x,2x+1,1),(2x+1,x+2,1):}|=(x-1)^3

lim_(x rarr1)[(x-1)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+x)]

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3