Home
Class 11
MATHS
Prove that for all ninN Cosalpha+cos(al...

Prove that for all `ninN` `Cosalpha+cos(alpha+beta)+cos(alpha+2beta)+ . . . +cos[alpha+(n-1)beta]`= `(cos[alpha+((n-1)/(2))beta]"sin"((nbeta)/(2)))/("sin"(beta)/(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Prove that: cos ^ (2) alpha + cos ^ (2) (alpha + beta) -2cos alpha cos beta cos (alpha + beta) = sin ^ (2) beta

Sum the series cosalpha+^nC_1 cos(alpha+beta)+^nC_2 cos (alpha+2beta)+…+cos(alpha+nbeta)

Statement-1: cos10^(@)+cos20^(@)+…..+cos170^(@)=0 Statement-2: cos alpha+cos(alpha+beta)+....+cos(alpha+(n-1)beta)=(cos(alpha+((n-1)beta)/(2))sin((nbeta)/(2)))/(sin((beta)/(2))), beta ne 2npi.

Statement-1: cos10^(@)+cos20^(@)+…..+cos170^(@)=0 Statement-2: cos alpha+cos(alpha+beta)+....+cos(alpha+(n-1)beta)=(cos(alpha+((n-1)beta)/(2))sin((nbeta)/(2)))/(sin((beta)/(2))), beta ne 2npi.