Home
Class 12
MATHS
int(dx)/(1+x+x^(2)+x^(3))=pi...

int(dx)/(1+x+x^(2)+x^(3))=pi

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(pi)(xsin^(3)x)/(1+cos^(2)x)dx=pi/2(pi-2)

If x in (0, (pi)/(2)) " then " int sqrt([(sin x - sin^(3) x)/(1 + sin^(3) x) ]) dx =

Prove that, int_(2)^(3)(dx)/((x-1)sqrt(x^(2)-2x))=(pi)/(3)

int (dx)/((x+1)(2x+1)) (ii) int (x-1)/((x-2)(x-3)) dx .

int_0^pi (x sin x)/(1+sin x) dx=pi/2 (pi-2)

int_(0)^( pi)(x)/((1+x)(1+x^(2)))dx

int_ (0) ^ ((pi) / (2)) (sin x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (cos x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (dx) / (1 + cot x) = int_ (0) ^ ((pi) / (2)) (dx) / ( 1 + time x) = (pi) / (4)