Home
Class 12
MATHS
if the function f(x)=(x^2-(a+2)x+a)/(x-2...

if the function `f(x)=(x^2-(a+2)x+a)/(x-2)` for `x!=2` and `f(x)=2` for `x=2` is continuous function at `x=2` then value of` a` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x)=(x^(2)-(A+2)x+A)/(x-2), for x!=2 and f(2)=2 is continuous at x=2, then find the value of A.

If the function f(x)={((x^2-(A+2)x+A)/(x-2), "for" x ne 2),(2, "for" x = 2):} is continuous at x = 2, then

Prove that f(x)= 2x-|x| is a continuous function at x= 0.

Function f(x)={x-1,x =2 is a continuous function

If the function f(x) = {((x^(2)-(A+2)x+A)/(x-2), ",", x != 2),(2, ",","for" x = 2):} is continuous at x = 2, then

If the function f(x) = {((x^(2)-(A+2)x+A)/(x-2), ",", x != 2),(2, ",","for" x = 2):} is continuous at x = 2, then

If the function f(x) = {{:((x^(2)-(a+2)x + a)/(x-2),,x ne 2),(2,,x = 2):} is continuous at x = 2, then :

If the function f(x)=(3x^(2)+ax+a+3)/(x^(2)+x-2) continuous at x=-2. find f(-2)

For what value of k, the function f(x)={kx^(2),quad if x<=2 and 3,quad if x<2 is continuous?

The function f(x)=2^(-2^(1//(1-x))) if x != 1 and f(1) = 1 is not continuous at x= 1.