Home
Class 12
MATHS
" 6."pi/ piquad A=[[1,1,-2],[2,1,-3],[5,...

" 6."pi/ piquad A=[[1,1,-2],[2,1,-3],[5,4,-9]],vec varepsilon" at "|A|" and anfing "1

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[[1,sin theta,1-sin theta,1,sin theta-1,-sin theta,1]],theta varepsilon((3 pi)/(4),(5 pi)/(4)) then |A| lies in (A),[(1)/(2),3)(B)[1,4)(C)[-1,2](D) none of these

If A=(1,0,1), B=(0,-1,0), C=(-1,0,1), D=(0,1,-1) then angle between vec(AB) and vec(CD) is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

Two charges,each equal to 2C can be placed so that the force between them equals to the weight of an object of mass 1kg .The distance between them is (take "g=10m/s^(2)" ) (10 pi varepsilon_(0))^(1/2), [1/(10 pi varepsilon_(0))^(1/2)], [1/10 pi varepsilon_(0)], [10 pi varepsilon_(0)]

if tan(2a-3b)*tan(4b-a)=1a,b varepsilon(0,(pi)/(2)) then the value of tan((a+b)/(6))

Given both thetaa n dphi are acute angles and sintheta=1/2,cosvarphi=1/3, then the value of theta+varphi belongs to (a) (pi/3,pi/2] (b) (pi/2,(2pi)/3] (c) ((2pi)/3,(5pi)/6] (d) ((5pi)/6,pi]

Given both thetaa n dphi are acute angles and sintheta=1/2,cosvarphi=1/3, then the value of theta+varphi belongs to (a) (pi/3,pi/2] (b) (pi/2,(2pi)/3] (c) ((2pi)/3,(5pi)/6] (d) ((5pi)/6,pi]

If vec aa n d vec b are any two vectors of magnitudes 1 and 2, respectively, and (1-3 vec adot vec b)^2+|2 vec a+ vec b+3( vec axx vec b)|^2=47 , then the angel between vec aa n d vec b is pi//3 b. pi-cos^(-1)(1//4) c. (2pi)/3 d. cos^(-1)(1//4)

If vec aa n d vec b are any two vectors of magnitudes 1 and 2, respectively, and (1-3 vec adot vec b)^2+|2 vec a+ vec b+3( vec axx vec b)|^2=47 , then the angel between vec aa n d vec b is a. pi//3 b. pi-cos^(-1)(1//4) c. (2pi)/3 d. cos^(-1)(1//4)

If vec aa n d vec b are any two vectors of magnitudes 1 and 2, respectively, and (1-3 vec a . vec b)^2+|2 vec a+ vec b+3( vec axx vec b)|^2=47 , then the angel between vec aa n d vec b is pi//3 b. pi-cos^(-1)(1//4) c. (2pi)/3 d. cos^(-1)(1//4)

If vec a and vec b are any two vectors of magnitudes 1 and 2, respectively,and (1-3vec ahat b)^(2)+|2vec a+vec b+3(vec a xxvec b)|^(2)=47 then the angel between vec a and vec b is pi/3 b.pi-cos^(-1)(1/4) c.(2 pi)/(3) d.cos^(-1)(1/4)