Home
Class 10
MATHS
" (iy) "(y)/(2)+(2y)/(3)=-1" and "x-(y)/...

" (iy) "(y)/(2)+(2y)/(3)=-1" and "x-(y)/(3)=3

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of 2 (y + 3) - x y(dy)/(dx) = 0 with y =-2, when x =1 is :a) (y + 3) = x ^(2) b) x ^(2) (y + 3) = 1 c) x ^(4) (y + 3) = 1 d) x ^(2) ( y +3) ^(2) = e ^(y +2)

Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+(5+ x)i (ii) 2x i+12= 3y-6i (iii) z=x+iy and i(z+2)+1=0 (iv) ((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=i (v) (3x-2iy)(2+i)^(2)=10(1+i)

Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+(5+ x)i (ii) 2x i+12= 3y-6i (iii) z=x+iy and i(z+2)+1=0 (iv) ((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=i (v) (3x-2iy)(2+i)^(2)=10(1+i)

If the points (x_(1),y_(1)),(x_(2),y_(2)), and (x_(3),y_(3)) are collinear show that (y_(2)-y_(3))/(x_(2)x_(3))+(y_(3)-y_(1))/(x_(3)x_(1))+(y_(1)-y_(2))/(x_(1)x_(2))=0

"Find the value of "(x+y)," if "(x+(y^(3))/(x^(2)))^(-1)-((x^(2))/(y)+(y^(2))/(x))^(-1)+((x^(3))/(y^(2))+y)^(-1)=(1)/(3)

If the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) be collinear, show that: (y_2 - y_3)/(x_2 x_3) + (y_3 - y_1)/(x_3 x_2) + (y_1 - y_2)/(x_1 x_2) = 0

If x^2=y^3 , then prove that (x/y)^(3/2)+(y/x)^-(2/3)=x^(1/2)+y^(1/3) .

Solve for x and y 2/(3x+2y)+3/(3x-2y)=17/5 5/(3x+2y)+1/(3x-2y)=2